Nargis Bano
Linköping University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Nargis Bano.
Materials | 2010
Magnus Willander; Omer Nur; J. R. Sadaf; Muhammad Israr Qadir; Saima Zaman; Ahmed Zainelabdin; Nargis Bano; I. Hussain
Zinc oxide (ZnO) is a strong luminescent material, as are several polymers. These two materials have distinct drawbacks and advantages, and they can be combined to form nanostructures with many important applications, e.g., large-area white lighting. This paper discusses the origin of visible emission centers in ZnO nanorods grown with different approaches. White light emitting diodes (LEDs) were fabricated by combining n-ZnO nanorods and hollow nanotubes with different p-type materials to form heterojunctions. The p-type component of the hybrids includes p-SiC, p-GaN, and polymers. We conclude by analyzing the electroluminescence of the different light emitting diodes we fabricated. The observed optical, electrical, and electro-optical characteristics of these LEDs are discussed with an emphasis on the deep level centers that cause the emission.
Journal of Applied Physics | 2010
Nargis Bano; Siama Zaman; Ahmed Zainelabdin; S. Hussain; I. Hussain; Omer Nur; Magnus Willander
We demonstrate white light luminescence from ZnO-organic hybrid light emitting diodes grown at 90 °C on flexible plastic substrate by aqueous chemical growth. The configuration used for the ZnO-organic hybrid white light emitting diodes (WLEDs) consists of a layer of poly (9, 9-dioctylfluorene) (PFO) on poly (3, 4-ethylenedioxythiophene) poly (styrenesulfonate) coated plastic with top ZnO nanorods. Structural, electrical, and optical properties of these WLEDs were measured and analyzed. Room temperature electroluminescence spectrum reveals a broad emission band covering the range from 420 to 750 nm. In order to distinguish the white light components and contribution of the PFO layer we used a Gaussian function to simulate the experimental data. Color coordinates measurement of the WLED reveals that the emitted light has a white impression. The color rendering index and correlated color temperature of the WLED were calculated to be 68 and 5800 K, respectively.
New Journal of Physics | 2009
Magnus Willander; Omer Nur; Nargis Bano; K. Sultana
ZnO nanorods with excellent optical and electro-optical emission characteristics were grown using high- and low-temperature techniques on solid and soft substrate materials. The solid crystalline substrates included p-4H-SiC and p-GaN, while the soft amorphous substrates included p-type polymers deposited on glass and flexible plastic. Two different growth approaches were used to produce these samples. We used the vapor–liquid–solid (VLS) technique (high temperature) and aqueous chemical growth (ACG), which is a low-temperature technique. These ZnO nanorod samples were characterized by room temperature photoluminescence (PL) and processed to fabricate light-emitting diodes (LEDs). The LED characteristics were further investigated by I–V and electroluminescence (EL). As observed by PL measurements, all samples revealed a sharp narrow ultraviolet (UV) peak due to band-edge emission, indicating the good crystalline quality of the grown ZnO nanorods. The origin of the different peaks within the visible region was correlated to different deep level defects reported earlier for ZnO. All fabricated LEDs showed EL providing a wide band extended through the whole visible spectrum and hence produced clear white light observable to the naked eye. The emitted color quality investigation showed that superior color quality was manifested in a high color rendering index and stable color under current variation, indicating that these heterojunction and hybrid LEDs have potential for the development of future light sources. The ZnO nanorod-based LEDs grown by low-temperature ACG on glass and flexible plastic can, after further development, be candidates for future large-area white-light sources.
Journal of Applied Physics | 2012
I. Hussain; Muhammad Yousuf Soomro; Nargis Bano; Omer Nur; Magnus Willander
Schottky diodes with Au/ZnO nanorod (NR)/n-SiC configurations have been fabricated and their interface traps and electrical properties have been investigated by current-voltage (I-V), capacitance-voltage (C-V), capacitance-frequency (C-f), and conductance-frequency (Gp/ω-ω) measurements. Detailed and systematic analysis of the frequency-dependent capacitance and conductance measurements was performed to extract the information about the interface trap states. The discrepancy between the high barrier height values obtained from the I-V and the C-V measurements was also analyzed. The higher capacitance at low frequencies was attributed to excess capacitance as a result of interface states in equilibrium in the ZnO that can follow the alternating current signal. The energy of the interface states (Ess) with respect to the valence band at the ZnO NR surface was also calculated. The densities of interface states obtained from the conductance and capacitance methods agreed well with each other and this confirm ...
Journal of Physics D | 2011
Magnus Willander; Omer Nur; Siama Zaman; Ahmed Zainelabdin; Nargis Bano; I. Hussain
Zinc oxide (ZnO) with its deep level defect emission covering the whole visible spectrum holds promise for the development of intrinsic white lighting sources with no need of using phosphors for light conversion. ZnO nanorods (NRs) grown on flexible plastic as substrate using a low temperature approach (down to 50 °C) were combined with different organic semiconductors to form hybrid junction. White electroluminescence (EL) was observed from these hybrid junctions. The configuration used for the hybrid white light emitting diodes (LEDs) consists of two-layers of polymers on the flexible plastic with ZnO NRs on the top. The inorganic/organic hybrid heterojunction has been fabricated by spin coating the p-type polymer poly (3,4-ethylenedioxythiophene) poly(styrenesulfonate) (PEDOT : PSS) for hole injection with an ionization potential of 5.1 eV and poly(9, 9-dioctylfluorene) (PFO) is used as blue emitting material with a bandgap of 3.3 eV. ZnO NRs are grown on top of the organic layers. Two other configurations were also fabricated; these are using a single MEH PPV (red-emitting polymer) instead of the PFO and the third configuration was obtained from a blend of the PFO and the MEH PPV. The white LEDs were characterized by scanning electron microscope, x-ray diffraction (XRD), current–voltage (I–V) characteristics, room temperature photoluminescence (PL) and EL. The EL spectrum reveals a broad emission band covering the range from 420 to 800 nm, and the emissions causing this white luminescence were identified.
Journal of Applied Physics | 2013
I. Hussain; Muhammad Yousuf Soomro; Nargis Bano; Omer Nur; Magnus Willander
This paper presents in-depth analysis of I-V-T characteristics of Au/ZnO nanorods Schottky diodes. The temperature dependence I-V parameters such as the ideality factor and the barrier heights have been explained on the basis of inhomogeneity. Detailed and systematic analysis was performed to extract information about the interface trap states. The ideality factor decreases, while the barrier height increases with increase of temperature. These observations have been ascribed to barrier inhomogeneities at the Au/ZnO nanorods interface. The inhomogeneities can be described by the Gaussian distribution of barrier heights. The effect of tunneling, Fermi level pinning, and image force lowering has contribution in the barrier height lowering. The recombination-tunneling mechanism is used to explain the conduction process in Au/ZnO nanorods Schottky diodes. The ionization of interface states has been considered for explaining the inhomogeneities.
Semiconductor Science and Technology | 2009
Nargis Bano; I. Hussain; Omer Nur; Magnus Willander; P. Klason; Anne Henry
High-quality ZnO nanorods (NRs) were grown by the vapor–liquid–solid (VLS) technique on 4H-p-SiC substrates. Heterojunction light emitting diodes (LEDs) were fabricated. Electrical characterization including deep level transient spectroscopy (DLTS) complemented by photoluminescence (PL) is used to characterize the heterojunction LEDs. In contrast to previously published results on n-ZnO thin films on p-SiC, we found that the dominant emission is originating from the ZnO NRs. Three luminescence lines have been observed; these are associated with blue (465 nm) and violet (446 nm) emission lines from ZnO NRs emitted by direct transition/recombination of carriers from the conduction band to a zinc vacancy (VZn) radiative center and from a zinc interstitial (Zni) radiative center to the valance band. The third green-yellow (575 nm) spectral line is emitted due to a transition of carriers from Zni to VZn. The superposition of these lines led to the observation of strong white light which appears as a wide band in the room temperature PL.
Materials | 2011
I. Hussain; Nargis Bano; Sajjad Hussain; Yousuf Soomro; Omer Nur; Magnus Willander
In this study, the low temperature aqueous chemical growth (ACG) method was employed to synthesized ZnO nanorods to process-organic hybrid white light emitting diodes (LEDs) on glass substrate. Electroluminescence spectra of the hybrid white LEDs demonstrate the combination of emission bands arising from radiative recombination of the organic and ZnO nanorods (NRs). Depth resolved luminescence was used for probing the nature and spatial distribution of radiative defects, especially to study the re-absorption of ultraviolet (UV) in this hybrid white LEDs structure. At room temperature the cathodoluminescence (CL) spectra intensity of the deep band emission (DBE) is increased with the increase of the electron beam penetration depth due to the increase of defect concentration at the ZnO NRs/Polyfluorene (PFO) interface and probably due to internal absorption of the UV. A strong dependency between the intensity ratio of the UV to the DBE bands and the spatial distribution of the radiative defects in ZnO NRs has been found. The comparison of the CL spectra from the PFO and the ZnO NRs demonstrate that PFO has a very weak violet-blue emission band, which confirms that most of the white emission components originate from the ZnO NRs.
Nanoscale Research Letters | 2012
Muhammad Yousuf Soomro; I. Hussain; Nargis Bano; Esteban Broitman; Omer Nur; Magnus Willander
We measure the elastic modulus of a single horizontal ZnO nanorod [NR] grown by a low-temperature hydrothermal chemical process on silicon substrates by performing room-temperature, direct load-controlled nanoindentation measurements. The configuration of the experiment for the single ZnO NR was achieved using a focused ion beam/scanning electron microscope dual-beam instrument. The single ZnO NR was positioned horizontally over a hole on a silicon wafer using a nanomanipulator, and both ends were bonded with platinum, defining a three-point bending configuration. The elastic modulus of the ZnO NR, extracted from the unloading curve using the well-known Oliver-Pharr method, resulted in a value of approximately 800 GPa. Also, we discuss the NR creep mechanism observed under indentation. The mechanical behavior reported in this paper will be a useful reference for the design and applications of future nanodevices.
Journal of Nanomaterials | 2010
Nargis Bano; I. Hussain; Omer Nur; Magnus Willander; P. Klason
High-quality ZnO rods were grown by the vapour-liquid-solid (VLS) technique on 4H-p-SiC substrate. The current transport mechanisms of the diodes at room temperature (RT) have been explained in termof the space-charge-limited currentmodel based on the energy band diagram of ZnO rods/4H-p-SiC heterostructure. The tunneling mechanism via deep-level states was found to be the main conduction process at low-applied voltage but at trap-filled limit voltage VTFL all traps are filled and the space-chargelimited current conduction dominated the current transport. From the RT current voltage measurements, the energy of the deep level trap and the trap concentration were obtained as ∼ 0.24 ± 0.02 eV and 4.4 × 1018cm-3, respectively. The deep level states observed correspond to zinc interstitial (Zni), responsible for the violet emission.