Nataliya Kibiryeva
University of Missouri–Kansas City
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Nataliya Kibiryeva.
Pediatrics | 2006
Douglas C. Bittel; Nataliya Kibiryeva; Merlin G. Butler
Prader-Willi syndrome is a neurodevelopmental disorder that is characterized by infantile hypotonia, feeding difficulties, hypogonadism, mental deficiency, hyperphagia (leading to obesity in early childhood), learning problems, and behavioral difficulties. A paternal 15q11-q13 deletion is found in ∼70% of patients with Prader-Willi syndrome, ∼25% have uniparental maternal disomy 15, and the remaining 2% to 5% have imprinting defects. The proximal deletion breakpoint in the 15q11-q13 region occurs at 1 of 2 sites located within either of 2 large duplicons allowing for the identification of 2 deletion subgroups. The larger, type I (TI) deletion involves breakpoint 1, which is close to the centromere, whereas the smaller, type II (TII) deletion involves breakpoint 2, located ∼500 kilobases distal to breakpoint 1. Breakpoint 3 is located at the distal end of the 15q11-q13 region and common to both typical deletion subgroups. Analyses of the genetic subtypes of Prader-Willi syndrome to date have primarily compared individuals with typical deletion and uniparental maternal disomy 15 without grouping the individuals with a deletion into TI or TII. Distinct differences have been reported between individuals with Prader-Willi syndrome resulting from deletion compared with uniparental maternal disomy 15 in physical, cognitive, and behavioral parameters. We previously presented the first assessment of clinical differences in individuals with Prader-Willi syndrome categorized as having type I or II deletions. Adaptive behavior, obsessive-compulsive behaviors, reading, math, and visual-motor integration assessments were generally poorer in individuals with Prader-Willi syndrome and the TI deletion compared with subjects with Prader-Willi syndrome with the TII deletion or uniparental maternal disomy 15. Four genes (NIPA1, NIPA2, CYFIP1, and GCP5) have been identified in the chromosomal region between breakpoints 1 and 2 and are implicated in compulsive behavior and lower intellectual ability observed in individuals with Prader-Willi syndrome with TI versus TII deletions. We quantified messenger-RNA levels of these 4 genes in actively growing lymphoblastoid cells derived from 8 subjects with Prader-Willi syndrome with the TI deletion (4 males, 4 females; mean: age 25.2 ± 8.9 years) and 9 with the TII deletion (3 males, 6 females; mean age: 19.5 ± 5.8 years). Messenger-RNA levels were correlated with validated psychological and behavioral scales administered by trained psychologists blinded to genotype status. Messenger RNA from NIPA1, NIPA2, CYFIP1, and GCP5 was reduced but detectable in the subjects with Prader-Willi syndrome with the TI deletion, supporting biallelic expression. For the most part, messenger-RNA values were positively correlated with assessment parameters, indicating a direct relationship between messenger-RNA levels and better assessment scores, with the highest correlation for NIPA2. The coefficient of determination indicated the quantity of messenger RNA of the 4 genes explained from 24% to 99% of the variation of the behavioral and academic parameters measured. By comparison, the coefficient of determination for deletion type alone explained 5% to 50% of the variation in the assessed parameters. Understanding the influence of gene expression on behavioral and cognitive characteristics in humans is in the early stage of research development. Additional research is needed to identify the function of these genes and their interaction with gene networks to clarify the potential role they play in central nervous system development and function.
American Journal of Medical Genetics Part A | 2008
Merlin G. Butler; William Fischer; Nataliya Kibiryeva; Douglas C. Bittel
Prader–Willi syndrome (PWS) is due to loss of paternally expressed genes in the 15q11–q13 region generally from a paternal 15q11–q13 deletion. The proximal deletion breakpoint in the 15q11–q13 region occurs at one of two sites located within either of two large duplicons allowing for identification of two typical deletion subgroups. The larger type I (TI) deletion involving breakpoint 1 (BP1) is nearer to the centromere and located proximal to the microsatellite marker D15S1035, while the smaller type II (TII) deletion involves breakpoint 2 (BP2) and distal to D15S1035. Breakpoint 3 (BP3) is located at the distal end of the 15q11–q13 region and common to both typical deletion subgroups. Using high resolution aCGH, BP1 spanned a region from 18.683 to 20.220 Mb, BP2 from 20.812 to 21.357 Mb and BP3 from 25.941 to 27.286 Mb. The TI deletion ranged in size from 5.721 to 8.147 Mb (mean 6.583) and the type II deletion from 4.770 to 6.435 Mb (mean 5.330). A subset of the TI subjects showed larger deletions including the loss of at least three genes/transcripts (i.e., LOC283755, POTE5, OR4N4) in addition to the four genes between BP1 and BP2 (i.e., GCP5, CYFIP1, NIPA1, NIPA2). Interestingly, four PWS subjects had duplications of the 15q11 region in addition to the typical deletion. Furthermore, most PWS subjects had copy number variation (CNV) of 50 kb or larger in other chromosome regions; most common were deletions and duplications of 8p and 3q, previously recognized sites of CNV in the human genome.
Journal of Medical Genetics | 2008
Douglas C. Bittel; Mariana F. Theodoro; Nataliya Kibiryeva; William Fischer; Zohreh Talebizadeh; Merlin G. Butler
Background: X-chromosome inactivation (XCI) is the mechanism by which gene dosage uniformity is achieved between female mammals with two X chromosomes and male mammals with a single X chromosome, and is thought to occur randomly. For molecular genetic testing, accessible tissues (eg blood) are commonly studied, but the relationship with inaccessible tissues (eg brain) is poorly understood. For accessible tissues to be informative for genetic analysis, a high degree of concordance of genetic findings among tissue types is required. Objective: To determine the relationship among multiple tissues within females at different ages (fetus to 82 years). Methods: XCI patterns were analysed using the polymorphic androgen receptor (AR) gene assay. DNA was isolated from 26 different human females without history of malignancy, using 34 autopsy tissues representing the three embryonic germ layers. Results: 33 of the 280 tissue samples analysed from 13 of the 26 females showed skewed XCI values (>80:20%). Average XCI value was not significantly different among the tissues, but a trend for increasing XCI variability was observed with age in blood and other tissues studied (eg the SD for all tissues studied for the 0–2 years group was 9.9% compared with 14.8% in the >60 years group). We found a significant correlation (rs = 0.51, p = 0.035) between XCI values for blood and/or spleen and brain tissue, and in most other tissues representing the three embryonic germ layers. Conclusions: In our study, XCI data were comparable among accessible (eg blood) and inaccessible tissues (eg brain) in females at various ages, and may be useful for genetic testing. A trend was seen for greater XCI variability with increasing age, particularly in older women (>60 years).
BMC Medical Genomics | 2011
Douglas C. Bittel; Merlin G. Butler; Nataliya Kibiryeva; Jennifer Marshall; Jie Chen; Gary K. Lofland; James E. O'Brien
BackgroundTetralogy of Fallot (TOF) is the most commonly observed conotruncal congenital heart defect. Treatment of these patients has evolved dramatically in the last few decades, yet a genetic explanation is lacking for the failure of cardiac development for the majority of children with TOF. Our goal was to perform genome wide analyses and characterize expression patterns in cardiovascular tissue (right ventricle, pulmonary valve and pulmonary artery) obtained at the time of reconstructive surgery from 19 children with tetralogy of Fallot.MethodsWe employed genome wide gene expression microarrays to characterize cardiovascular tissue (right ventricle, pulmonary valve and pulmonary artery) obtained at the time of reconstructive surgery from 19 children with TOF (16 idiopathic and three with 22q11.2 deletions) and compared gene expression patterns to normally developing subjects.ResultsWe detected a signal from approximately 26,000 probes reflecting expression from about half of all genes, ranging from 35% to 49% of array probes in the three tissues. More than 1,000 genes had a 2-fold change in expression in the right ventricle (RV) of children with TOF as compared to the RV from matched control infants. Most of these genes were involved in compensatory functions (e.g., hypertrophy, cardiac fibrosis and cardiac dilation). However, two canonical pathways involved in spatial and temporal cell differentiation (WNT, p = 0.017 and Notch, p = 0.003) appeared to be generally suppressed.ConclusionsThe suppression of developmental networks may represent a remnant of a broad malfunction of regulatory pathways leading to inaccurate boundary formation and improper structural development in the embryonic heart. We suggest that small tissue specific genomic and/or epigenetic fluctuations could be cumulative, leading to regulatory network disruption and failure of proper cardiac development.
Journal of Medical Genetics | 2003
Douglas C. Bittel; Nataliya Kibiryeva; Zohreh Talebizadeh; Merlin G. Butler
Background: Prader-Willi syndrome (PWS), the most common genetic cause of marked obesity, is caused by genomic imprinting and loss of expression of paternal genes in the 15q11–q13 region. There is a paucity of data examining simultaneous gene expression in this syndrome. Methods: We generated cDNA microarrays representing 73 non-redundant genes/transcripts from the 15q11–q13 region, the majority within the PWS critical region and others distally on chromosome 15. We used our custom microarrays to compare gene expression from actively growing lymphoblastoid cell lines established from nine young adult males (six with PWS (three with deletion and three with UPD) and three controls). Results: There was no evidence of expression of genes previously identified as paternally expressed in the PWS cell lines with either deletion or UPD. We detected no difference in expression of genes with known biallelic expression located outside the 15q11–q13 region in all cell lines studied. There was no difference in expression levels of biallelically expressed genes (for example, OCA2) from within 15q11–q13 when comparing UPD cell lines with controls. However, two genes previously identified as maternally expressed (UBE3A and ATP10C) showed a significant increase in expression in UPD cell lines compared with control and PWS deletion subjects. Several genes/transcripts (for example, GABRA5, GABRB3) had increased expression in UPD cell lines compared with deletion, but less than controls indicating paternal bias. Conclusions: Our results suggest that differences in expression of candidate genes may contribute to phenotypic differences between PWS subjects with deletion or UPD and warrant further investigations.
American Journal of Medical Genetics Part A | 2007
Douglas C. Bittel; Nataliya Kibiryeva; Susan M. Sell; Theresa V. Strong; Merlin G. Butler
Prader–Willi syndrome (PWS) is caused by loss of function of paternally expressed genes in the 15q11‐q13 region and a paucity of data exists on transcriptome variation. To further characterize genetic alterations in this classic obesity syndrome using whole genome microarrays to analyze gene expression, microarray and quantitative RT‐PCR analysis were performed using RNA isolated from lymphoblastoid cells from PWS male subjects (four with 15q11‐q13 deletion and three with UPD) and three age and cognition matched nonsyndromic comparison males. Of more than 47,000 probes examined in the microarray, 23,383 were detectable and 323 had significantly different expression in the PWS lymphoblastoid cells relative to comparison cells, 14 of which were related to neurodevelopment and function. As expected, there was no evidence of expression of paternally expressed genes from the 15q11‐q13 region (e.g., SNRPN) in the PWS cells. Alterations in expression of serotonin receptor genes (e.g., HTR2B) and genes involved in eating behavior and obesity (ADIPOR2, MC2R, HCRT, OXTR) were noted. Other genes of interest with reduced expression in PWS subjects included STAR (a key regulator of steroid synthesis) and SAG (an arrestin family member which desensitizes G‐protein‐coupled receptors). Quantitative RT‐PCR for SAG, OXTR, STAR, HCRT, and HTR2B using RNA isolated from their lymphoblastoid cells and available brain tissue (frontal cortex) from separate individuals with PWS and control subjects and normalized to GAPD gene expression levels validated our microarray gene expression data. Our analysis identified previously unappreciated changes in gene expression which may contribute to the clinical manifestations seen in PWS.
Cytogenetic and Genome Research | 2009
Douglas C. Bittel; Shihui Yu; H. Newkirk; Nataliya Kibiryeva; A. Holt; Merlin G. Butler; Linda D. Cooley
Hemizygous deletions of the chromosome 22q11.2 region result in the 22q11.2 deletion syndrome also referred to as DiGeorge, Velocardiofacial or Shprintzen syndromes. The phenotype is variable but commonly includes conotruncal cardiac defects, palatal abnormalities, learning and behavioral problems, immune deficiency, and facial anomalies. Four distinct highly homologous blocks of low copy number repeat sequences (LCRs) flank the deletion region. Mispairing of LCRs during meiosis with unequal meiotic exchange is assumed to cause the recurrent and consistent deletions. The proximal LCR is reportedly located at 22q11.2 from 17.037 to 17.083 Mb while the distal LCR is located from 19.835 to 19.880 Mb. Although the chromosome breakpoints are thought to localize to the LCRs, the positions of the breakpoints have been investigated in only a few individuals. Therefore, we used high resolution oligonucleotide-based 244K microarray comparative genomic hybridization (aCGH) to resolve the breakpoints in a cohort of 20 subjects with known 22q11.2 deletions. We also investigated copy number variation (CNV) in the rest of the genome. The 22q11.2 breaks occurred on either side of the LCR in our subjects, although more commonly on the distal side of the reported proximal LCR. The proximal breakpoints in our subjects spanned the region from 17.036 to 17.398 Mb. This region includes the genes DGCR6 (DiGeorge syndrome critical region protein 6) and PRODH (proline dehydrogenase 1), along with three open reading frames that may encode proteins of unknown function. The distal breakpoints spanned the region from 19.788 to 20.122 Mb. This region includes the genes GGT2 (gamma-glutamyltransferase-like protein 2), HIC2 (hypermethylated in cancer 2), and multiple transcripts of unknown function. The genes in these two breakpoint regions are variably hemizygous depending on the location of the breakpoints. Our 20 subjects had 254 CNVs throughout the genome, 94 duplications and 160 deletions, ranging in size from 1 kb to 2.4 Mb. The presence or absence of genes at the breakpoints depending on the size of the deletion plus variation in the rest of the genome due to CNVs likely contribute to the variable phenotype associated with the 22q11.2 deletion or DiGeorge syndrome.
American Journal of Clinical Pathology | 2009
Shihui Yu; Douglas C. Bittel; Nataliya Kibiryeva; David L. Zwick; Linda D. Cooley
High-resolution microarray comparative genomic hybridization (aCGH) is being adopted for diagnostic evaluation of genomic disorders, but validation for clinical diagnosis has not yet been reported. We present validation data for the Agilent Human Genome Microarray Kit 244K for clinical application. The platform contains approximately 240,000 distinct 60-mer oligonucleotide probes spanning the entire human genome. We studied 45 previously characterized samples (43 abnormal, 2 normal), 32 with knowledge of prior results and 13 in a blinded manner with 11 performed in a reference laboratory providing microarray testing. Array analysis confirmed known aberrations in 43 samples and a normal result in 2. The array analysis corrected 1 karyotype and clarified 2 additional cases. Array data from 6 patients with 22q11.2 deletion found an average of 2.56 megabases (Mb; range, 2.49-2.62 Mb) with a common 2.43-Mb deleted region. Approximately 7 copy number variants from 400 base pairs to 1.6 Mb were identified per sample. Results demonstrate the usefulness of the aCGH-244K platform as a powerful diagnostic tool.
Genetics in Medicine | 2007
Douglas C. Bittel; Nataliya Kibiryeva; Merlin G. Butler
Purpose: Fragile X syndrome, the most common inherited form of human mental retardation, arises as a consequence of a large expansion of a CGG trinucleotide repeat in 5′ untranslated region of the fragile X mental retardation 1 (FMR1) gene located on the X chromosome. Although the FMR1 gene was cloned 15 years ago, the mechanisms that cause fragile X syndrome remain to be elucidated. Multiple studies have identified proteins that potentially interact with FMRP, the product of FMR1, and differentially expressed genes in an Fmr1 knockout mouse. To assess the impact of fragile X syndrome on gene expression in humans and to attempt to identify disturbed genes and gene interactive pathways relevant to fragile X syndrome, we performed gene expression microarray analysis using RNA isolated from lymphoblastoid cells derived from males with fragile X syndrome with and similarly aged control males.Methods: We used whole genome microarrays consisting of 57,000 probes to analyze global changes to the transcriptome in readily available lymphoblastoid cell lines derived from males with fragile X syndrome and healthy comparison males with normal intelligence. We verified the differential expression of several of these genes with known biological function relevant to fragile X syndrome using quantitative reverse transcription polymerase chain reaction using RNA from lymphoblastoid cells from fragile X syndrome and control males as well as RNA from human brain tissue (frontal cortex) of other affected fragile X syndrome males.Results: We identified more than 90 genes that had significant differences in probe intensity of at least 1.5-fold with a false discovery rate of 5% in cells from males with fragile X syndrome relative to comparison males. The list of 90 differentially expressed genes contained an overrepresentation of genes involved in signaling (e.g., UNC13B [−3.3-fold change in expression in lymphoblasts by quantitative reverse transcription polymerase chain reaction), GABRD [+2.0-fold change] EEF1A2 [+4.3-fold change]), morphogenesis (e.g., MAP1B [−7.5-fold change], ACCN1 [−8.0-fold change]), and neurodevelopment and function (e.g., PPP1R9B [+3.5-fold change], HES1 [+2.8-fold change]).Conclusions: These genes may represent members of candidate networks disturbed by the loss of FMR1 and consequently fragile X mental retardation protein function, thus lending support for altered fragile X mental retardation protein function resulting in an abnormal transcriptome. Further analyses of the genes, especially those that have been identified in multiple studies, are warranted to develop a more integrated description of the alterations in gene processing that lead to fragile X syndrome.
Genetic Testing | 2007
Douglas C. Bittel; Nataliya Kibiryeva; Merlin G. Butler
Prader-Willi syndrome (PWS) and Angelman syndrome (AS) are neurodevelopmental disorders caused by loss of expression of imprinted genes from the 15q11-q13 region. They arise from similar defects in the region but differ in parent of origin. There are two recognized typical 15q11-q13 deletions depending on size and several diagnostic assays are available but each has limitations. We evaluated the usefulness of a methylation-specific multiplex ligation-dependent probe amplification (MLPA) kit consisting of 43 probes to detect copy number changes and methylation status in the region. We used the MLPA kit to genotype 82 subjects with chromosome 15 abnormalities (62 PWS, 10 AS and 10 individuals with other chromosome 15 abnormalities) and 13 with normal cytogenetic findings. We developed an algorithm for MLPA probe analysis which correctly identified methylation abnormalities associated with PWS and AS and accurately determined copy number in previously assigned genetic subtypes including microdeletions of the imprinting center. Furthermore, MLPA analysis identified copy number changes in those with distal 15q deletions and ring 15s. MLPA is a relatively simple, cost-effective technique found to be useful and accurate for methylation status, copy number and analysis of genetic subtype in PWS and AS, as well as other chromosome 15 abnormalities.