Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nelly Alia-Klein is active.

Publication


Featured researches published by Nelly Alia-Klein.


Obesity | 2009

Inverse association between BMI and prefrontal metabolic activity in healthy adults.

Nora D. Volkow; Gene-Jack Wang; Frank Telang; Joanna S. Fowler; Rita Z. Goldstein; Nelly Alia-Klein; Jean Logan; Christopher Wong; Panayotis K. Thanos; Yemine Ma; Kith Pradhan

Obesity has been associated with a higher risk for impaired cognitive function, which most likely reflects associated medical complications (i.e., cerebrovascular pathology). However, there is also evidence that in healthy individuals excess weight may adversely affect cognition (executive function, attention, and memory). Here, we measured regional brain glucose metabolism (using positron emission tomography (PET) and 2‐deoxy‐2[18F]fluoro‐d‐glucose (FDG)) to assess the relationship between BMI and brain metabolism (marker of brain function) in 21 healthy controls (BMI range 19–37 kg/m2) studied during baseline (no stimulation) and during cognitive stimulation (numerical calculations). Statistical parametric mapping (SPM) revealed a significant negative correlation between BMI and metabolic activity in prefrontal cortex (Brodmann areas 8, 9, 10, 11, 44) and cingulate gyrus (Brodmann area 32) but not in other regions. Moreover, baseline metabolism in these prefrontal regions was positively associated with performance on tests of memory (California Verbal Learning Test) and executive function (Stroop Interference and Symbol Digit Modality tests). In contrast, the regional brain changes during cognitive stimulation were not associated with BMI nor with neuropsychological performance. The observed association between higher BMI and lower baseline prefrontal metabolism may underlie the impaired performance reported in healthy obese individuals on some cognitive tests of executive function. On the other hand, the lack of an association between BMI and brain metabolic activation during cognitive stimulation indicates that BMI does not influence brain glucose utilization during cognitive performance. These results further highlight the urgency to institute public health interventions to prevent obesity.


Neuroscience | 2007

Role of the anterior cingulate and medial orbitofrontal cortex in processing drug cues in cocaine addiction

Rita Z. Goldstein; Dardo Tomasi; Suparna Rajaram; Lisa A. Cottone; Lei Zhang; Thomas Maloney; Frank Telang; Nelly Alia-Klein; Nora D. Volkow

Our goal in the current report was to design a new functional magnetic resonance imaging (fMRI) task to probe the role of the anterior cingulate cortex (ACC) and orbitofrontal cortex (OFC) in processing of salient symptom-related cues during the simultaneous performance of an unrelated task in drug-addicted persons. We used a novel fMRI color-word drug Stroop task in 14 individuals with cocaine use disorders; subjects had to press for color of drug vs. matched neutral words. Although there were no accuracy or speed differences between the drug and neutral conditions in the current sample of subjects, drug words were more negatively valenced than the matched neutral words. Further, consistent with prior reports in individuals with other psychopathologies using different Stroop fMRI paradigms, our more classical color-word Stroop design revealed bilateral activations in the caudal-dorsal anterior cingulate cortex (cdACC) and hypoactivations in the rostro-ventral anterior cingulate cortex/medial orbitofrontal cortex (rACC/mOFC). A trend for larger rACC/mOFC hypoactivations to the drug than neutral words did not survive whole-brain corrections. Nevertheless, correlation analyses indicated that (1) the more the cdACC drug-related activation, the more negative the valence attributed to the drug words (r=-0.86, P<0.0001) but not neutral words; and (2) the more the rACC/mOFC hypoactivation to drug minus neutral words, the more the errors committed specifically to the drug minus neutral words (r=0.85, P<0.0001). Taken together, results suggest that this newly developed drug Stroop fMRI task may be a sensitive biobehavioral assay of the functions recruited for the regulation of responses to salient symptom-related stimuli in drug-addicted individuals.


The Journal of Neuroscience | 2008

Brain monoamine oxidase A activity predicts trait aggression

Nelly Alia-Klein; Rita Z. Goldstein; A. Kriplani; Jean Logan; Dardo Tomasi; Benjamin Williams; Frank Telang; Elena Shumay; Anat Biegon; Ian Craig; Fritz A. Henn; Gene-Jack Wang; Nora D. Volkow; Joanna S. Fowler

The genetic deletion of monoamine oxidase A (MAO A), an enzyme that breaks down the monoamine neurotransmitters norepinephrine, serotonin, and dopamine, produces aggressive phenotypes across species. Therefore, a common polymorphism in the MAO A gene (MAOA, Mendelian Inheritance in Men database number 309850, referred to as high or low based on transcription in non-neuronal cells) has been investigated in a number of externalizing behavioral and clinical phenotypes. These studies provide evidence linking the low MAOA genotype and violent behavior but only through interaction with severe environmental stressors during childhood. Here, we hypothesized that in healthy adult males the gene product of MAO A in the brain, rather than the gene per se, would be associated with regulating the concentration of brain amines involved in trait aggression. Brain MAO A activity was measured in vivo in healthy nonsmoking men with positron emission tomography using a radioligand specific for MAO A (clorgyline labeled with carbon 11). Trait aggression was measured with the multidimensional personality questionnaire (MPQ). Here we report for the first time that brain MAO A correlates inversely with the MPQ trait measure of aggression (but not with other personality traits) such that the lower the MAO A activity in cortical and subcortical brain regions, the higher the self-reported aggression (in both MAOA genotype groups) contributing to more than one-third of the variability. Because trait aggression is a measure used to predict antisocial behavior, these results underscore the relevance of MAO A as a neurochemical substrate of aberrant aggression.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Anterior cingulate cortex hypoactivations to an emotionally salient task in cocaine addiction

Rita Z. Goldstein; Nelly Alia-Klein; Dardo Tomasi; Jean Honorio Carrillo; Thomas Maloney; Patricia A. Woicik; Ruiliang Wang; Frank Telang; Nora D. Volkow

Anterior cingulate cortex (ACC) hypoactivations during cognitive processing characterize drug addicted individuals as compared with healthy controls. However, impaired behavioral performance or task disengagement may be crucial factors. We hypothesized that ACC hypoactivations would be documented in groups matched for performance on an emotionally salient task. Seventeen individuals with current cocaine use disorders (CUD) and 17 demographically matched healthy controls underwent functional magnetic resonance imaging during performance of a rewarded drug cue-reactivity task previously shown to engage the ACC. Despite lack of group differences in objective or subjective task-related performance, CUD showed more ACC hypoactivations throughout this emotionally salient task. Nevertheless, intensity of emotional salience contributed to results: (i) CUD with the largest rostroventral ACC [Brodmann Area (BA) 10, 11, implicated in default brain function] hypoactivations to the most salient task condition (drug words during the highest available monetary reward), had the least task-induced cocaine craving; (ii) CUD with the largest caudal-dorsal ACC (BA 32) hypoactivations especially to the least salient task condition (neutral words with no reward) had the most frequent current cocaine use; and (iii) responses to the most salient task condition in both these ACC major subdivisions were positively intercorrelated in the controls only. In conclusion, ACC hypoactivations in drug users cannot be attributed to task difficulty or disengagement. Nevertheless, emotional salience modulates ACC responses in proportion to drug use severity. Interventions to strengthen ACC reactivity or interconnectivity may be beneficial in enhancing top-down monitoring and emotion regulation as a strategy to reduce impulsive and compulsive behavior in addiction.


Molecular Psychiatry | 2012

Decreased dopamine activity predicts relapse in methamphetamine abusers

G. Wang; L Smith; Nora D. Volkow; Frank Telang; Jean Logan; Dardo Tomasi; Christopher Wong; W Hoffman; M Jayne; Nelly Alia-Klein; Panayotis K. Thanos; Joanna S. Fowler

Studies in methamphetamine (METH) abusers showed that the decreases in brain dopamine (DA) function might recover with protracted detoxification. However, the extent to which striatal DA function in METH predicts recovery has not been evaluated. Here we assessed whether striatal DA activity in METH abusers is associated with clinical outcomes. Brain DA D2 receptor (D2R) availability was measured with positron emission tomography and [11C]raclopride in 16 METH abusers, both after placebo and after challenge with 60u2009mg oral methylphenidate (MPH) (to measure DA release) to assess whether it predicted clinical outcomes. For this purpose, METH abusers were tested within 6 months of last METH use and then followed up for 9 months of abstinence. In parallel, 15 healthy controls were tested. METH abusers had lower D2R availability in caudate than in controls. Both METH abusers and controls showed decreased striatal D2R availability after MPH and these decreases were smaller in METH than in controls in left putamen. The six METH abusers who relapsed during the follow-up period had lower D2R availability in dorsal striatum than in controls, and had no D2R changes after MPH challenge. The 10 METH abusers who completed detoxification did not differ from controls neither in striatal D2R availability nor in MPH-induced striatal DA changes. These results provide preliminary evidence that low striatal DA function in METH abusers is associated with a greater likelihood of relapse during treatment. Detection of the extent of DA dysfunction may be helpful in predicting therapeutic outcomes.


Neuropsychopharmacology | 2009

The Neuropsychology of Cocaine Addiction: Recent Cocaine Use Masks Impairment

Patricia A. Woicik; Scott J. Moeller; Nelly Alia-Klein; Thomas Maloney; Tanya M Lukasik; Olga Yeliosof; Gene-Jack Wang; Nora D. Volkow; Rita Z. Goldstein

Individuals with current cocaine use disorders (CUD) form a heterogeneous group, making sensitive neuropsychological (NP) comparisons with healthy individuals difficult. The current study examined the effects on NP functioning of four factors that commonly vary among CUD: urine status for cocaine (positive vs negative on study day), cigarette smoking, alcohol consumption, and dysphoria. Sixty-four cocaine abusers were matched to healthy comparison subjects on gender and race; the groups also did not differ in measures of general intellectual functioning. All subjects were administered an extensive NP battery measuring attention, executive function, memory, facial and emotion recognition, and motor function. Compared with healthy control subjects, CUD exhibited performance deficits on tasks of attention, executive function, and verbal memory (within one standard deviation of controls). Although CUD with positive urine status, who had higher frequency and more recent cocaine use, reported greater symptoms of dysphoria, these cognitive deficits were most pronounced in the CUD with negative urine status. Cigarette smoking, frequency of alcohol consumption, and dysphoria did not alter these results. The current findings replicate a previously reported statistically significant, but relatively mild NP impairment in CUD as compared with matched healthy control individuals and further suggest that frequent/recent cocaine may mask underlying cognitive (but not mood) disturbances. These results call for development of pharmacological agents targeted to enhance cognition, without negatively impacting mood in individuals addicted to cocaine.


Brain Research | 2007

Widespread disruption in brain activation patterns to a working memory task during cocaine abstinence.

Dardo Tomasi; Rita Z. Goldstein; Frank Telang; Thomas Maloney; Nelly Alia-Klein; Elisabeth C. Caparelli; Nora D. Volkow

Cocaine abstinence is associated with impaired performance in cognitive functions including attention, vigilance and executive function. Here we test the hypothesis that cognitive dysfunction during cocaine abstinence reflects in part impairment of cortical and subcortical regions modulated by dopamine. We used functional magnetic resonance imaging (fMRI) to study brain activation to a verbal working memory task in cocaine abusers (n=16) and healthy controls (n=16). Compared to controls, cocaine abusers showed: (1) hypoactivation in the mesencephalon, where dopamine neurons are located, as well as the thalamus, a brain region involved in arousal; (2) larger deactivation in dopamine projection regions (putamen, anterior cingulate, parahippocampal gyrus, and amygdala); and (3) hyperactivation in cortical regions involved with attention (prefrontal and parietal cortices), which probably reflects increased attention and control processes as compensatory mechanisms. Furthermore, the working memory load activation was lower in the prefrontal and parietal cortices in cocaine abusers when compared with controls, which might reflect limited network capacity. These abnormalities were accentuated in the cocaine abusers with positive urines for cocaine at time of study (as compared to cocaine abusers with negative urines) suggesting that the deficits may reflect in part early cocaine abstinence. These findings provide evidence of impaired function of regions involved with executive control, attention and vigilance in cocaine abusers. This widespread neurofunctional disruption is likely to underlie the cognitive deficits during early cocaine abstinence and to reflect involvement of dopamine as well as other neurotransmitters.


PLOS ONE | 2010

Disrupted functional connectivity with dopaminergic midbrain in cocaine abusers.

Dardo Tomasi; Nora D. Volkow; Ruiliang Wang; Jean Honorio Carrillo; Thomas Maloney; Nelly Alia-Klein; Patricia A. Woicik; Frank Telang; Rita Z. Goldstein

Background Chronic cocaine use is associated with disrupted dopaminergic neurotransmission but how this disruption affects overall brain function (other than reward/motivation) is yet to be fully investigated. Here we test the hypothesis that cocaine addicted subjects will have disrupted functional connectivity between the midbrain (where dopamine neurons are located) and cortical and subcortical brain regions during the performance of a sustained attention task. Methodology/Principal Findings We measured brain activation and functional connectivity with fMRI in 20 cocaine abusers and 20 matched controls. When compared to controls, cocaine abusers had lower positive functional connectivity of midbrain with thalamus, cerebellum, and rostral cingulate, and this was associated with decreased activation in thalamus and cerebellum and enhanced deactivation in rostral cingulate. Conclusions/Significance These findings suggest that decreased functional connectivity of the midbrain interferes with the activation and deactivation signals associated with sustained attention in cocaine addicts.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Oral methylphenidate normalizes cingulate activity in cocaine addiction during a salient cognitive task

Rita Z. Goldstein; Patricia A. Woicik; Thomas Maloney; Dardo Tomasi; Nelly Alia-Klein; Juntian Shan; Jean Honorio; Dimitris Samaras; Ruiliang Wang; Frank Telang; Gene-Jack Wang; Nora D. Volkow

Anterior cingulate cortex (ACC) hypoactivations during cognitive demand are a hallmark deficit in drug addiction. Methylphenidate (MPH) normalizes cortical function, enhancing task salience and improving associated cognitive abilities, in other frontal lobe pathologies; however, in clinical trials, MPH did not improve treatment outcome in cocaine addiction. We hypothesized that oral MPH will attenuate ACC hypoactivations and improve associated performance during a salient cognitive task in individuals with cocaine-use disorders (CUD). In the current functional MRI study, we used a rewarded drug cue-reactivity task previously shown to be associated with hypoactivations in both major ACC subdivisions (implicated in default brain function) in CUD compared with healthy controls. The task was performed by 13 CUD and 14 matched healthy controls on 2 d: after ingesting a single dose of oral MPH (20 mg) or placebo (lactose) in a counterbalanced fashion. Results show that oral MPH increased responses to this salient cognitive task in both major ACC subdivisions (including the caudal-dorsal ACC and rostroventromedial ACC extending to the medial orbitofrontal cortex) in the CUD. These functional MRI results were associated with reduced errors of commission (a common impulsivity measure) and improved task accuracy, especially during the drug (vs. neutral) cue-reactivity condition in all subjects. The clinical application of such MPH-induced brain-behavior enhancements remains to be tested.


Biological Psychiatry | 2007

Evidence That Brain MAO A Activity Does Not Correspond to MAO A Genotype in Healthy Male Subjects

Joanna S. Fowler; Nelly Alia-Klein; A. Kriplani; Jean Logan; Benjamin Williams; Wei Zhu; Ian Craig; Frank Telang; Rita Z. Goldstein; Nora D. Volkow; P. Vaska; Gene-Jack Wang

BACKGROUNDnA functional polymorphism in the promoter region of the monoamine oxidase A (MAO A) gene has two common alleles that are referred to as the high and low MAO A genotypes. We report the first in vivo human study to determine whether there is an association between MAO A genotype and brain MAO A activity in healthy male subjects.nnnMETHODSnBrain MAO A activity was measured with positron emission tomography and [(11)C]clorgyline in 38 healthy adult male nonsmokers genotyped for MAO A polymorphism.nnnRESULTSnThere was no significant difference in brain MAO A activity between the high (n = 26) and low (n = 12) MAO A genotypes.nnnCONCLUSIONSnThe lack of an association between the high and low MAO A genotype and brain MAO A activity suggests that this polymorphism by itself does not contribute to differences in brain MAO A activity in healthy adult male subjects.

Collaboration


Dive into the Nelly Alia-Klein's collaboration.

Top Co-Authors

Avatar

Rita Z. Goldstein

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

Nora D. Volkow

National Institute on Drug Abuse

View shared research outputs
Top Co-Authors

Avatar

Frank Telang

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Dardo Tomasi

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Gene-Jack Wang

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Patricia A. Woicik

Brookhaven National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Thomas Maloney

Brookhaven National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Joanna S. Fowler

Brookhaven National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Muhammad A. Parvaz

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

Scott J. Moeller

Icahn School of Medicine at Mount Sinai

View shared research outputs
Researchain Logo
Decentralizing Knowledge