Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Scott J. Moeller is active.

Publication


Featured researches published by Scott J. Moeller.


Neuropsychopharmacology | 2009

The Neuropsychology of Cocaine Addiction: Recent Cocaine Use Masks Impairment

Patricia A. Woicik; Scott J. Moeller; Nelly Alia-Klein; Thomas Maloney; Tanya M Lukasik; Olga Yeliosof; Gene-Jack Wang; Nora D. Volkow; Rita Z. Goldstein

Individuals with current cocaine use disorders (CUD) form a heterogeneous group, making sensitive neuropsychological (NP) comparisons with healthy individuals difficult. The current study examined the effects on NP functioning of four factors that commonly vary among CUD: urine status for cocaine (positive vs negative on study day), cigarette smoking, alcohol consumption, and dysphoria. Sixty-four cocaine abusers were matched to healthy comparison subjects on gender and race; the groups also did not differ in measures of general intellectual functioning. All subjects were administered an extensive NP battery measuring attention, executive function, memory, facial and emotion recognition, and motor function. Compared with healthy control subjects, CUD exhibited performance deficits on tasks of attention, executive function, and verbal memory (within one standard deviation of controls). Although CUD with positive urine status, who had higher frequency and more recent cocaine use, reported greater symptoms of dysphoria, these cognitive deficits were most pronounced in the CUD with negative urine status. Cigarette smoking, frequency of alcohol consumption, and dysphoria did not alter these results. The current findings replicate a previously reported statistically significant, but relatively mild NP impairment in CUD as compared with matched healthy control individuals and further suggest that frequent/recent cocaine may mask underlying cognitive (but not mood) disturbances. These results call for development of pharmacological agents targeted to enhance cognition, without negatively impacting mood in individuals addicted to cocaine.


JAMA Psychiatry | 2013

Effects of Methylphenidate on Resting-State Functional Connectivity of the Mesocorticolimbic Dopamine Pathways in Cocaine Addiction

Anna B. Konova; Scott J. Moeller; Dardo Tomasi; Nora D. Volkow; Rita Z. Goldstein

IMPORTANCE Cocaine addiction is associated with altered resting-state functional connectivity among regions of the mesocorticolimbic dopamine pathways. Methylphenidate hydrochloride, an indirect dopamine agonist, normalizes task-related regional brain activity and associated behavior in cocaine users; however, the neural systems-level effects of methylphenidate in this population have not yet been described. OBJECTIVE To use resting-state functional magnetic resonance imaging to examine changes in mesocorticolimbic connectivity with methylphenidate and how connectivity of affected pathways relates to severity of cocaine addiction. DESIGN Randomized, placebo-controlled, before-after, crossover study. SETTING Clinical research center. PARTICIPANTS Eighteen nonabstaining individuals with cocaine use disorders. INTERVENTIONS Single doses of oral methylphenidate (20 mg) or placebo were administered at each of 2 study sessions. At each session, resting scans were acquired twice: immediately after drug administration (before the onset of effects [baseline]) and 120 minutes later (within the window of peak effects). MAIN OUTCOMES AND MEASURES Functional connectivity strength was evaluated using a seed voxel correlation approach. Changes in this measure were examined to characterize the neural systems-level effects of methylphenidate; severity of cocaine addiction was assessed by interview and questionnaire. RESULTS Short-term methylphenidate administration reduced an abnormally strong connectivity of the ventral striatum with the dorsal striatum (putamen/globus pallidus), and lower connectivity between these regions during placebo administration uniquely correlated with less severe addiction. In contrast, methylphenidate strengthened several corticolimbic and corticocortical connections. CONCLUSIONS AND RELEVANCE These findings help elucidate the neural systems-level effects of methylphenidate and suggest that short-term methylphenidate can, at least transiently, remodel abnormal circuitry relevant to the pathophysiologic characteristics of cocaine addiction. In particular, the effects of methylphenidate within striatal and cortical pathways constitute a potentially viable mechanism by which methylphenidate could facilitate control of behavior in cocaine addiction.


Trends in Cognitive Sciences | 2014

Impaired self-awareness in human addiction: deficient attribution of personal relevance.

Scott J. Moeller; Rita Z. Goldstein

Compromised self-awareness of illness-related deficits and behaviors in psychopathology (e.g., schizophrenia) has been associated with deficient functioning of cortical midline regions including the ventromedial prefrontal cortex (vmPFC), implicated in personal relevance. Here, we review and critically analyze recent evidence to suggest that vmPFC abnormalities could similarly underlie deficient tagging of personal relevance in drug addiction, evidenced by a constellation of behaviors encompassing drug-biased attention, negative outcome insensitivity, self-report/behavior dissociation, and social inappropriateness. This novel framework might clarify, for example, why drug-addicted individuals often ruin long-standing relationships or forego important job opportunities while continuing to engage in uncontrolled drug-taking. Therapeutic interventions targeting personal relevance and associated vmPFC functioning could enhance self-awareness and facilitate more adaptive behavior in this chronically relapsing psychopathology.


Cerebral Cortex | 2014

Methylphenidate Enhances Executive Function and Optimizes Prefrontal Function in Both Health and Cocaine Addiction

Scott J. Moeller; Jean Honorio; Dardo Tomasi; Muhammad A. Parvaz; Patricia A. Woicik; Nora D. Volkow; Rita Z. Goldstein

Previous studies have suggested dopamine to be involved in error monitoring/processing, possibly through impact on reinforcement learning. The current study tested whether methylphenidate (MPH), an indirect dopamine agonist, modulates brain and behavioral responses to error, and whether such modulation is more pronounced in cocaine-addicted individuals, in whom dopamine neurotransmission is disrupted. After receiving oral MPH (20 mg) or placebo (counterbalanced), 15 healthy human volunteers and 16 cocaine-addicted individuals completed a task of executive function (the Stroop color word) during functional magnetic resonance imaging (fMRI). During MPH, despite not showing differences on percent accuracy and reaction time, all subjects committed fewer total errors and slowed down more after committing errors, suggestive of more careful responding. In parallel, during MPH all subjects showed reduced dorsal anterior cingulate cortex response to the fMRI contrast error>correct. In the cocaine subjects only, MPH also reduced error>correct activity in the dorsolateral prefrontal cortex (controls instead showed lower error>correct response in this region during placebo). Taken together, MPH modulated dopaminergically innervated prefrontal cortical areas involved in error-related processing, and such modulation was accentuated in the cocaine subjects. These results are consistent with a dopaminergic contribution to error-related processing during a cognitive control task.


Emotion | 2009

Neural mechanisms of anger regulation as a function of genetic risk for violence

Nelly Alia-Klein; Rita Z. Goldstein; Dardo Tomasi; Patricia A. Woicik; Scott J. Moeller; Benjamin Williams; Ian Craig; Frank Telang; Anat Biegon; Gene-Jack Wang; Joanna S. Fowler; Nora D. Volkow

Genetic risk may predispose individuals to compromised anger regulation, potentially through modulation of brain responses to emotionally evocative stimuli. Emphatically expressed, the emotional word No can prohibit behavior through conditioning. In a recent functional magnetic resonance imaging study, the authors showed that healthy males attribute negative valence to No while showing a lateral orbitofrontal response that correlated with their self-reported anger control. Here, the authors examined the influence of the monoamine oxidase A (MAOA) gene (low vs. high transcription variants) on brain response to No and in relationship to trait anger reactivity and control. The orbitofrontal response did not differ as a function of the genotype. Instead, carriers of the low-MAOA genotype had reduced left middle frontal gyrus activation to No compared with the high variant. Furthermore, only for carriers of the up low-MAOA genotype, left amygdala and posterior thalamic activation to No increased with anger reactivity. Thus, vulnerability to aggression in carriers of the low-MAOA genotype is supported by decreased middle frontal response to No and the unique amygdala/thalamus association pattern in this group with anger reactivity but not anger control.


Neuroscience & Biobehavioral Reviews | 2013

Common and distinct neural targets of treatment: Changing brain function in substance addiction

Anna B. Konova; Scott J. Moeller; Rita Z. Goldstein

Neuroimaging offers an opportunity to examine the neurobiological effects of therapeutic interventions for human drug addiction. Using activation likelihood estimation, the aim of the current meta-analysis was to quantitatively summarize functional neuroimaging studies of pharmacological and cognitive-based interventions for drug addiction, with an emphasis on their common and distinct neural targets. More exploratory analyses also contrasted subgroups of studies based on specific study and sample characteristics. The ventral striatum, a region implicated in reward, motivation, and craving, and the inferior frontal gyrus and orbitofrontal cortex, regions involved in inhibitory control and goal-directed behavior, were identified as common targets of pharmacological and cognitive-based interventions; these regions were observed when the analysis was limited to only studies that used established or efficacious interventions, and across imaging paradigms and types of addictions. Consistent with theoretical models, cognitive-based interventions were additionally more likely to activate the anterior cingulate cortex, middle frontal gyrus, and precuneus, implicated in self-referential processing, cognitive control, and attention. These results suggest that therapeutic interventions for addiction may target the brain structures that are altered across addictions and identify potential neurobiological mechanisms by which the tandem use of pharmacological and cognitive-based interventions may yield synergistic or complementary effects. These findings could inform the selection of novel functional targets in future treatment development for this difficult-to-treat disorder.


JAMA Psychiatry | 2014

Functional, Structural, and Emotional Correlates of Impaired Insight in Cocaine Addiction

Scott J. Moeller; Anna B. Konova; Muhammad A. Parvaz; Dardo Tomasi; Richard D. Lane; Carolyn Fort; Rita Z. Goldstein

IMPORTANCE Individuals with cocaine use disorder (CUD) have difficulty monitoring ongoing behavior, possibly stemming from dysfunction of brain regions mediating insight and self-awareness. OBJECTIVE To investigate the neural correlates of impaired insight in addiction using a combined functional magnetic resonance imaging and voxel-based morphometry approach. DESIGN, SETTING, AND PARTICIPANTS This multimodal imaging study was performed at the Clinical Research Center at Brookhaven National Laboratory. The study included 33 CUD cases and 20 healthy controls. MAIN OUTCOMES AND MEASURES Functional magnetic resonance imaging, voxel-based morphometry, Levels of Emotional Awareness Scale, and drug use variables. RESULTS Compared with the other 2 study groups, the impaired insight CUD group had lower error-induced rostral anterior cingulate cortex (rACC) activity as associated with more frequent cocaine use, less gray matter within the rACC, and lower Levels of Emotional Awareness Scale scores. CONCLUSIONS AND RELEVANCE These results point to rACC functional and structural abnormalities and diminished emotional awareness in a subpopulation of CUD cases characterized by impaired insight. Because the rACC has been implicated in appraising the affective and motivational significance of errors and other types of self-referential processing, functional and structural abnormalities in this region could result in lessened concern (frequently ascribed to minimization and denial) about behavioral outcomes that could potentially culminate in increased drug use. Treatments that target this CUD subgroup could focus on enhancing the salience of errors (eg, lapses).


Journal of Psychopharmacology | 2010

Liking and wanting of drug and non-drug rewards in active cocaine users: the STRAP-R questionnaire

Rita Z. Goldstein; Patricia A. Woicik; Scott J. Moeller; Frank Telang; Millard Jayne; Cristopher Wong; Gene-Jack Wang; Js Fowler; Nora D. Volkow

Few studies have examined the subjective value attributed to drug rewards specifically as it compares with the value attributed to primary non-drug rewards in addicted individuals. The objective of this study is to assess ‘liking’ and ‘wanting’ of expected ‘drug’ rewards as compared to ‘food’ and ‘sex’ while respondents report about three different situations (‘current’, and hypothetical ‘in general’, and ‘under drug influence’). In all, 20 cocaine-addicted individuals (mean abstinence = 2 days) and 20 healthy control subjects were administered the STRAP-R (Sensitivity To Reinforcement of Addictive and other Primary Rewards) questionnaire after receiving an oral dose of the dopamine agonist methylphenidate (20 mg) or placebo. The reinforcers’ relative value changed within the addicted sample when reporting about the ‘under drug influence’ situation (drug > food; otherwise, drug < food). This change was highest in the addicted individuals with the youngest age of cocaine use onset. Moreover, ‘drug’ ‘wanting’ exceeded ‘drug’ ‘liking’ in the addicted subjects when reporting about this situation during methylphenidate. Thus, cocaine-addicted individuals assign the highest subjective valence to ‘drug’ rewards but only when recalling cue-related situations. When recalling this situation, they also report higher ‘drug’ ‘wanting’ than hedonic ‘liking’, a motivational shift that was only significant during methylphenidate. Together, these valence shifts may underlie compulsive stimulant abuse upon pharmacological or behavioural cue exposure in addicted individuals. Additional studies are required to assess the reliability of the STRAP-R in larger samples and to examine its validity in measuring the subjective value attributed to experienced reinforcers or in predicting behaviour.


Translational Psychiatry | 2012

Dopaminergic involvement during mental fatigue in health and cocaine addiction

Scott J. Moeller; Dardo Tomasi; Jean Honorio; Nora D. Volkow; Rita Z. Goldstein

Dopamine modulates executive function, including sustaining cognitive control during mental fatigue. Using event-related functional magnetic resonance imaging (fMRI) during the color-word Stroop task, we aimed to model mental fatigue with repeated task exposures in 33 cocaine abusers and 20 healthy controls. During such mental fatigue (indicated by increased errors, and decreased post-error slowing and dorsal anterior cingulate response to error as a function of time-on-task), healthy individuals showed increased activity in the dopaminergic midbrain to error. Cocaine abusers, characterized by disrupted dopamine neurotransmission, showed an opposite pattern of response. This midbrain fMRI activity with repetition was further correlated with objective indices of endogenous motivation in all subjects: a state measure (task reaction time) and a trait measure (dopamine D2 receptor availability in caudate, as revealed by positron emission tomography data collected in a subset of this sample, which directly points to a contribution of dopamine to these results). In a second sample of 14 cocaine abusers and 15 controls, administration of an indirect dopamine agonist, methylphenidate, reversed these midbrain responses in both groups, possibly indicating normalization of response in cocaine abusers because of restoration of dopamine signaling but degradation of response in healthy controls owing to excessive dopamine signaling. Together, these multimodal imaging findings suggest a novel involvement of the dopaminergic midbrain in sustaining motivation during fatigue. This region might provide a useful target for strengthening self-control and/or endogenous motivation in addiction.


European Journal of Neuroscience | 2012

Structural and behavioral correlates of abnormal encoding of money value in the sensorimotor striatum in cocaine addiction.

Anna B. Konova; Scott J. Moeller; Dardo Tomasi; Muhammad A. Parvaz; Nelly Alia-Klein; Nora D. Volkow; Rita Z. Goldstein

Abnormalities in frontostriatal systems are thought to be central to the pathophysiology of addiction, and may underlie the maladaptive processing of the highly generalizable reinforcer, money. Although abnormal frontostriatal structure and function have been observed in individuals addicted to cocaine, it is less clear how individual variability in brain structure is associated with brain function to influence behavior. Our objective was to examine frontostriatal structure and neural processing of money value in chronic cocaine users and closely matched healthy controls. A reward task that manipulated different levels of money was used to isolate neural activity associated with money value. Gray matter volume measures were used to assess frontostriatal structure. Our results indicated that cocaine users had an abnormal money value signal in the sensorimotor striatum (right putamen/globus pallidus) that was negatively associated with accuracy adjustments to money and was more pronounced in individuals with more severe use. In parallel, group differences were also observed in both the function and gray matter volume of the ventromedial prefrontal cortex; in the cocaine users, the former was directly associated with response to money in the striatum. These results provide strong evidence for abnormalities in the neural mechanisms of valuation in addiction and link these functional abnormalities with deficits in brain structure. In addition, as value signals represent acquired associations, their abnormal processing in the sensorimotor striatum, a region centrally implicated in habit formation, could signal disadvantageous associative learning in cocaine addiction.

Collaboration


Dive into the Scott J. Moeller's collaboration.

Top Co-Authors

Avatar

Rita Z. Goldstein

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

Muhammad A. Parvaz

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

Nelly Alia-Klein

Brookhaven National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Anna B. Konova

Center for Neural Science

View shared research outputs
Top Co-Authors

Avatar

Nora D. Volkow

National Institute on Drug Abuse

View shared research outputs
Top Co-Authors

Avatar

Dardo Tomasi

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Patricia A. Woicik

Brookhaven National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Gene-Jack Wang

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Thomas Maloney

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

Frank Telang

National Institutes of Health

View shared research outputs
Researchain Logo
Decentralizing Knowledge