Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nicholas J. Agard is active.

Publication


Featured researches published by Nicholas J. Agard.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Copper-free click chemistry for dynamic in vivo imaging

Jeremy M. Baskin; Jennifer A. Prescher; Scott T. Laughlin; Nicholas J. Agard; Pamela V. Chang; Isaac A. Miller; Anderson Lo; Julian A. Codelli; Carolyn R. Bertozzi

Dynamic imaging of proteins in live cells is routinely performed by using genetically encoded reporters, an approach that cannot be extended to other classes of biomolecules such as glycans and lipids. Here, we report a Cu-free variant of click chemistry that can label these biomolecules rapidly and selectively in living systems, overcoming the intrinsic toxicity of the canonical Cu-catalyzed reaction. The critical reagent, a substituted cyclooctyne, possesses ring strain and electron-withdrawing fluorine substituents that together promote the [3 + 2] dipolar cycloaddition with azides installed metabolically into biomolecules. This Cu-free click reaction possesses comparable kinetics to the Cu-catalyzed reaction and proceeds within minutes on live cells with no apparent toxicity. With this technique, we studied the dynamics of glycan trafficking and identified a population of sialoglycoconjugates with unexpectedly rapid internalization kinetics.


Journal of the American Chemical Society | 2008

Second-Generation Difluorinated Cyclooctynes for Copper-Free Click Chemistry

Julian A. Codelli; Jeremy M. Baskin; Nicholas J. Agard; Carolyn R. Bertozzi

The 1,3-dipolar cycloaddition of azides and activated alkynes has been used for site-selective labeling of biomolecules in vitro and in vivo. While copper catalysis has been widely employed to activate terminal alkynes for [3 + 2] cycloaddition, this method, often termed “click chemistry”, is currently incompatible with living systems because of the toxicity of the metal. We recently reported a difluorinated cyclooctyne (DIFO) reagent that rapidly reacts with azides in living cells without the need for copper catalysis. Here we report a novel class of DIFO reagents for copper-free click chemistry that are considerably more synthetically tractable. The new analogues maintained the same elevated rates of [3 + 2] cycloaddition as the parent compound and were used for imaging glycans on live cells. These second-generation DIFO reagents should expand the use of copper-free click chemistry in the hands of biologists.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Copper-free click chemistry in living animals

Pamela V. Chang; Jennifer A. Prescher; Ellen M. Sletten; Jeremy M. Baskin; Isaac A. Miller; Nicholas J. Agard; Anderson Lo; Carolyn R. Bertozzi

Chemical reactions that enable selective biomolecule labeling in living organisms offer a means to probe biological processes in vivo. Very few reactions possess the requisite bioorthogonality, and, among these, only the Staudinger ligation between azides and triarylphosphines has been employed for direct covalent modification of biomolecules with probes in the mouse, an important model organism for studies of human disease. Here we explore an alternative bioorthogonal reaction, the 1,3-dipolar cycloaddition of azides and cyclooctynes, also known as “Cu-free click chemistry,” for labeling biomolecules in live mice. Mice were administered peracetylated N-azidoacetylmannosamine (Ac4ManNAz) to metabolically label cell-surface sialic acids with azides. After subsequent injection with cyclooctyne reagents, glycoconjugate labeling was observed on isolated splenocytes and in a variety of tissues including the intestines, heart, and liver, with no apparent toxicity. The cyclooctynes tested displayed various labeling efficiencies that likely reflect the combined influence of intrinsic reactivity and bioavailability. These studies establish Cu-free click chemistry as a bioorthogonal reaction that can be executed in the physiologically relevant context of a mouse.


Proceedings of the National Academy of Sciences of the United States of America | 2006

Discovery of aminoacyl-tRNA synthetase activity through cell-surface display of noncanonical amino acids

A. James Link; Mandy K. S. Vink; Nicholas J. Agard; Jennifer A. Prescher; Carolyn R. Bertozzi; David A. Tirrell

The incorporation of noncanonical amino acids into recombinant proteins in Escherichia coli can be facilitated by the introduction of new aminoacyl-tRNA synthetase activity into the expression host. We describe here a screening procedure for the identification of new aminoacyl-tRNA synthetase activity based on the cell surface display of noncanonical amino acids. Screening of a saturation mutagenesis library of the E. coli methionyl-tRNA synthetase (MetRS) led to the discovery of three MetRS mutants capable of incorporating the long-chain amino acid azidonorleucine into recombinant proteins with modest efficiency. The Leu-13 → Gly (L13G) mutation is found in each of the three MetRS mutants, and the MetRS variant containing this single mutation is highly efficient in producing recombinant proteins that contain azidonorleucine.


Accounts of Chemical Research | 2009

Chemical Approaches To Perturb, Profile, and Perceive Glycans

Nicholas J. Agard; Carolyn R. Bertozzi

Glycosylation is an essential form of post-translational modification that regulates intracellular and extracellular processes. Regrettably, conventional biochemical and genetic methods often fall short for the study of glycans, because their structures are often not precisely defined at the genetic level. To address this deficiency, chemists have developed technologies to perturb glycan biosynthesis, profile their presentation at the systems level, and perceive their spatial distribution. These tools have identified potential disease biomarkers and ways to monitor dynamic changes to the glycome in living organisms. Still, glycosylation remains the underexplored frontier of many biological systems. In this Account, we focus on research in our laboratory that seeks to transform the study of glycan function from a challenge to routine practice. In studies of proteins and nucleic acids, functional studies have often relied on genetic manipulations to perturb structure. Though not directly subject to mutation, we can determine glycan structure−function relationships by synthesizing defined glycoconjugates or by altering natural glycosylation pathways. Chemical syntheses of uniform glycoproteins and polymeric glycoprotein mimics have facilitated the study of individual glycoconjugates in the absence of glycan microheterogeneity. Alternatively, selective inhibition or activation of glycosyltransferases or glycosidases can define the biological roles of the corresponding glycans. Investigators have developed tools including small molecule inhibitors, decoy substrates, and engineered proteins to modify cellular glycans. Current approaches offer a precision approaching that of genetic control. Genomic and proteomic profiling form a basis for biological discovery. Glycans also present a rich matrix of information that adapts rapidly to changing environs. Glycomic and glycoproteomic analyses via microarrays and mass spectrometry are beginning to characterize alterations in glycans that correlate with disease. These approaches have already identified several cancer biomarkers. Metabolic labeling can identify recently synthesized glycans and thus directly track glycan dynamics. This approach can highlight changes in physiology or environment and may be more informative than steady-state analyses. Together, glycomic and metabolic labeling techniques provide a comprehensive description of glycosylation as a foundation for hypothesis generation. Direct visualization of proteins via the green fluorescent protein (GFP) and its congeners has revolutionized the field of protein dynamics. Similarly, the ability to perceive the spatial organization of glycans could transform our understanding of their role in development, infection, and disease progression. Fluorescent tagging in cultured cells and developing organisms has revealed important insights into the dynamics of these structures during growth and development. These results have highlighted the need for additional imaging probes.


Molecular & Cellular Proteomics | 2010

Inflammatory Stimuli Regulate Caspase Substrate Profiles

Nicholas J. Agard; David A. Maltby; James A. Wells

The inflammatory caspases, human caspases-1, -4, and -5, proteolytically modulate diverse physiological outcomes in response to proinflammatory signals. Surprisingly, only a few substrates are known for these enzymes, including other caspases and the interleukin-1 family of cytokines. To more comprehensively characterize inflammatory caspase substrates, we combined an enzymatic N-terminal enrichment method with mass spectrometry-based proteomics to identify newly cleaved proteins. Analysis of THP-1 monocytic cell lysates treated with recombinant purified caspases identified 82 putative caspase-1 substrates, three putative caspase-4 substrates, and no substrates for caspase-5. By contrast, inflammatory caspases activated in THP-1 cells by mimics of gout (monosodium urate), bacterial infection (lipopolysaccharide and ATP), or viral infection (poly(dA·dT)) were found to cleave only 27, 16, and 22 substrates, respectively. Quantitative stable isotope labeling with amino acids in cell culture (SILAC) comparison of these three inflammatory stimuli showed that they induced largely overlapping substrate profiles but different extents of proteolysis. Interestingly, only half of the cleavages found in response to proinflammatory stimuli were contained within our set of 82 in vitro cleavage sites. These data provide the most comprehensive set of caspase-1-cleaved products reported to date and indicate that caspases-4 and -5 have far fewer substrates. Comparisons between the in vitro and in vivo data highlight the importance of localization in regulating inflammatory caspase activity. Finally, our data suggest that inducers of inflammation may subtly alter caspase-1 substrate profiles.


Methods in Enzymology | 2006

Metabolic Labeling of Glycans with Azido Sugars for Visualization and Glycoproteomics

Scott T. Laughlin; Nicholas J. Agard; Jeremy M. Baskin; Isaac Carrico; Pamela V. Chang; Anjali S. Ganguli; Matthew J. Hangauer; Anderson Lo; Jennifer A. Prescher; Carolyn R. Bertozzi

The staggering complexity of glycans renders their analysis extraordinarily difficult, particularly in living systems. A recently developed technology, termed metabolic oligosaccharide engineering, enables glycan labeling with probes for visualization in cells and living animals, and enrichment of specific glycoconjugate types for proteomic analysis. This technology involves metabolic labeling of glycans with a specifically reactive, abiotic functional group, the azide. Azido sugars are fed to cells and integrated by the glycan biosynthetic machinery into various glycoconjugates. The azido sugars are then covalently tagged, either ex vivo or in vivo, using one of two azide-specific chemistries: the Staudinger ligation, or the strain-promoted [3+2] cycloaddition. These reactions can be used to tag glycans with imaging probes or epitope tags, thus enabling the visualization or enrichment of glycoconjugates. Applications to noninvasive imaging and glycoproteomic analyses are discussed.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Global kinetic analysis of proteolysis via quantitative targeted proteomics

Nicholas J. Agard; Sami Mahrus; Jonathan C. Trinidad; Aenoch Lynn; Alma L. Burlingame; James A. Wells

Mass spectrometry-based proteomics is a powerful tool for identifying hundreds to thousands of posttranslational modifications in complex mixtures. However, it remains enormously challenging to simultaneously assess the intrinsic catalytic efficiencies (kcat/KM) of these modifications in the context of their natural interactors. Such fundamental enzymological constants are key to determining substrate specificity and for establishing the timing and importance of cellular signaling. Here, we report the use of selected reaction monitoring (SRM) for tracking proteolysis induced by human apoptotic caspases-3, -7, -8, and -9 in lysates and living cells. By following the appearance of the cleaved peptides in lysate as a function of time, we were able to determine hundreds of catalytic efficiencies in parallel. Remarkably, we find the rates of substrate hydrolysis for individual caspases vary greater than 500-fold indicating a sequential process. Moreover, the rank-order of substrate cutting is similar in apoptotic cells, suggesting that cellular structures do not dramatically alter substrate accessibility. Comparisons of extrinsic (TRAIL) and intrinsic (staurosporine) inducers of apoptosis revealed similar substrate profiles, suggesting the final proteolytic demolitions proceed by similarly ordered plans. Certain biological processes were rapidly targeted by the caspases, including multiple components of the endocyotic pathway and miRNA processing machinery. We believe this massively parallel and quantitative label-free approach to obtaining basic enzymological constants will facilitate the study of proteolysis and other posttranslational modifications in complex mixtures.


Journal of Biological Chemistry | 2012

Fibrils Colocalize Caspase-3 with Procaspase-3 to Foster Maturation

Julie A. Zorn; Dennis W. Wolan; Nicholas J. Agard; James A. Wells

Background: Procaspase-3 is a critical protease in apoptosis. Results: Procaspase-3 has less than 1/10,000,000 the activity of mature caspase-3 and does not detectably autoprocess. Small molecule and proteogenic fibrils promote procaspase-3 maturation through induced proximity to an active protease. Conclusion: Fibrils enhance procaspase-3 maturation in vitro through colocalization with upstream proteases. Significance: These studies demonstrate the importance of scaffolding and colocalization with active proteases for procaspase-3 processing and activation. Most proteases are expressed as inactive precursors, or zymogens, that become activated by limited proteolysis. We previously identified a small molecule, termed 1541, that dramatically promotes the maturation of the zymogen, procaspase-3, to its mature form, caspase-3. Surprisingly, compound 1541 self-assembles into nanofibrils, and localization of procaspase-3 to the fibrils promotes activation. Here, we interrogate the biochemical mechanism of procaspase-3 activation on 1541 fibrils in addition to proteogenic amyloid-β(1–40) fibrils. In contrast to previous reports, we find no evidence that procaspase-3 alone is capable of self-activation, consistent with its fate-determining role in executing apoptosis. In fact, mature caspase-3 is >107-fold more active than procaspase-3, making this proenzyme a remarkably inactive zymogen. However, we also show that fibril-induced colocalization of trace amounts of caspase-3 or other initiator proteases with procaspase-3 dramatically stimulates maturation of the proenzyme in vitro. Thus, similar to known cellular signaling complexes, these synthetic or natural fibrils can serve as platforms to concentrate procaspase-3 for trans-activation by upstream proteases.


Nature Chemical Biology | 2014

Unraveling the mechanism of cell death induced by chemical fibrils

Olivier Julien; Martin Kampmann; Michael C. Bassik; Julie A. Zorn; Vincent J. Venditto; Kazutaka Shimbo; Nicholas J. Agard; Kenichi Shimada; Arnold L. Rheingold; Brent R. Stockwell; Jonathan S. Weissman; James A. Wells

We previously discovered a small-molecule inducer of cell death, named 1541, that non-covalently self-assembles into chemical fibrils (“chemi-fibrils”) and activates procaspase-3 in vitro. We report here that 1541-induced cell death is caused by the fibrillar, rather than the soluble form of the drug. An shRNA screen reveals that knockdown of genes involved in endocytosis, vesicle trafficking, and lysosomal acidification causes partial 1541 resistance. We confirm the role of these pathways using pharmacological inhibitors. Microscopy shows that the fluorescent chemi-fibrils accumulate in punctae inside cells that partially co-localize with lysosomes. Notably, the chemi-fibrils bind and induce liposome leakage in vitro, suggesting they may do the same in cells. The chemi-fibrils induce extensive proteolysis including caspase substrates, yet modulatory profiling reveals that chemi-fibrils form a distinct class from existing inducers of cell death. The chemi-fibrils share similarities to proteinaceous fibrils and may provide insight into their mechanism of cellular toxicity.

Collaboration


Dive into the Nicholas J. Agard's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jennifer A. Prescher

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Xiyun Zhang

University of California

View shared research outputs
Top Co-Authors

Avatar

James A. Wells

University of California

View shared research outputs
Top Co-Authors

Avatar

Oscar Alvizo

California Institute of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge