Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where O Chibani is active.

Publication


Featured researches published by O Chibani.


Journal of Applied Clinical Medical Physics | 2003

Shielding evaluation for IMRT implementation in an existing accelerator vault

Robert A. Price; O Chibani; C.-M. Ma

A formalism is developed for evaluating the shielding in an existing vault to be used for IMRT. Existing exposure rate measurements are utilized as well as a newly developed effective modulation scaling factor. Examples are given for vaults housing 6, 10 and 18 MV linear accelerators. The use of an 18 MV Siemens linear accelerator is evaluated for IMRT delivery with respect to neutron production and the effects on individual patients. A modified modulation scaling factor is developed and the risk of the incurrence of fatal secondary malignancies is estimated. The difference in neutron production between 18 MV Varian and Siemens accelerators is estimated using Monte Carlo results. The neutron production from the Siemens accelerator is found to be approximately 4 times less than that of the Varian accelerator resulting in a risk of fatal secondary malignancy occurrence of approximately 1.6% when using the SMLC delivery technique and our measured modulation scaling factors. This compares with a previously published value of 1.6% for routine 3D CRT delivery on the Varian accelerator. PACS number(s): 87.52.Ga, 87.52.Px, 87.53.Qc, 87.53.Wz


Medical Physics | 2014

HDRMC, an accelerated Monte Carlo dose calculator for high dose rate brachytherapy with CT-compatible applicators

O Chibani; Charlie C-M Ma

PURPOSE To present a new accelerated Monte Carlo code for CT-based dose calculations in high dose rate (HDR) brachytherapy. The new code (HDRMC) accounts for both tissue and nontissue heterogeneities (applicator and contrast medium). METHODS HDRMC uses a fast ray-tracing technique and detailed physics algorithms to transport photons through a 3D mesh of voxels representing the patient anatomy with applicator and contrast medium included. A precalculated phase space file for the(192)Ir source is used as source term. HDRM is calibrated to calculated absolute dose for real plans. A postprocessing technique is used to include the exact density and composition of nontissue heterogeneities in the 3D phantom. Dwell positions and angular orientations of the source are reconstructed using data from the treatment planning system (TPS). Structure contours are also imported from the TPS to recalculate dose-volume histograms. RESULTS HDRMC was first benchmarked against the MCNP5 code for a single source in homogenous water and for a loaded gynecologic applicator in water. The accuracy of the voxel-based applicator model used in HDRMC was also verified by comparing 3D dose distributions and dose-volume parameters obtained using 1-mm(3) versus 2-mm(3) phantom resolutions. HDRMC can calculate the 3D dose distribution for a typical HDR cervix case with 2-mm resolution in 5 min on a single CPU. Examples of heterogeneity effects for two clinical cases (cervix and esophagus) were demonstrated using HDRMC. The neglect of tissue heterogeneity for the esophageal case leads to the overestimate of CTV D90, CTV D100, and spinal cord maximum dose by 3.2%, 3.9%, and 3.6%, respectively. CONCLUSIONS A fast Monte Carlo code for CT-based dose calculations which does not require a prebuilt applicator model is developed for those HDR brachytherapy treatments that use CT-compatible applicators. Tissue and nontissue heterogeneities should be taken into account in modern HDR brachytherapy planning.


Medical Physics | 2016

MO-FG-CAMPUS-JeP3-05: Evaluation of 4D CT-On-Rails Target Localization Methods for Free Breathing Liver Stereotactic Body Radiotherapy (SBRT)

J Fan; T Lin; L Jin; L Chen; I Veltchev; L Wang; A Eldib; O Chibani; B Wang; Q Xu; R Price; C Ma

PURPOSE Liver SBRT patients unable to tolerate breath-hold for radiotherapy are treated free-breathing with image guidance. Target localization using 3D CBCT requires extra margins to accommodate the respiratory motion. The purpose of this study is to evaluate the accuracy and reproducibility of 4D CT-on-rails in target localization for free-breathing liver SBRT. METHODS A Siemens SOMATOM CT-on-Rails 4D with Anzai Pressure Belt system was used both as the simulation and the localization CT. Fiducial marker was placed close to the center of the target prior to the simulation. Amplitude based sorting was used in the scan. Eight or sixteen phases of reconstructed CT sets (depends on breathing pattern) can be sent to Velocity to create the maximum intensity projection (MIP) image set. Target ITV and fiducial ITV were drawn based on the MIP image. In patient localization, a 4D scan was taken with the same settings as the sim scan. Images were registered to match fiducial ITVs. RESULTS Ten liver cancer patients treated for 50Gy over 5 fractions, with amplitudes of breathing motion ranging from 4.3-14.5 mm, were analyzed in this study. Results show that the Intra & inter fraction variability in liver motion amplitude significantly less than the baseline inter-fraction shifts in liver position. 90% of amplitude change is less than 3 mm. The differences in the D99 and D95 GTV dose coverage between the 4D CT-on-Rails and the CBCT plan were small (within 5%) for all the selected cases. However, the average PTV volume by using the 4D CT-on-Rails is 37% less than the CBCT PTV volume. CONCLUSION Simulation and Registration using 4D CT-on-Rails provides accurate target localization and is unaffected by larger breathing amplitudes as seen with 3D CBCT image registration. Localization with 4D CT-on-Rails can significantly reduce the PTV volume with sufficient tumor.


Medical Physics | 2016

SU-F-T-524: Investigation of the Dosimertric Benefits of Interchangeable Source Size of a Novel Rotating Gamma System

A Eldib; O Chibani; L Chen; J Li; R Price; C Ma

PURPOSE Tremendous technological developments were made for conformal therapy techniques with linear accelerators, while less attention was paid to cobalt-60 units. The aim of the current study is to explore the dosimetric benefits of a novel rotating gamma ray system enhanced with interchangeable source sizes and multi-leaf collimator (MLC). MATERIAL AND METHODS CybeRT is a novel rotating gamma ray machine with a ring gantry that ensures an iso-center accuracy of less than 0.3 mm. The new machine has a 70cm source axial distance allowing for improved penumbra compared to conventional machines. MCBEAM was used to simulate Cobalt-60 beams from the CybeRT head, while the MCPLAN code was used for modeling the MLC and for phantom/patient dose calculation. The CybeRT collimation will incorporate a system allowing for interchanging source sizes. In this work we have created phase space files for 1cm and 2cm source sizes. Evaluation of the system was done by comparing CybeRT beams with the 6MV beams in a water phantom and in patient geometry. Treatment plans were compared based on isodose distributions and dose volume histograms. RESULTS Profiles for the 1cm source were comparable to that from 6MV in the order of 6mm for 10×10 cm2 field size at the depth of maximum dose. This could ascribe to Cobalt-60 beams producing lowerenergy secondary electrons. Although, the 2cm source have a larger penumbra however it could be still used for large targets with proportionally increased dose rate. For large lung targets, the difference between cobalt and 6MV plans is clinically insignificant. Our preliminary results showed that interchanging source sizes will allow cobalt beams for volumetric arc therapy of both small lesions and large tumors. CONCLUSION The CybeRT system will be a cost effective machine capable of performing advanced radiation therapy treatments of both small tumors and large target volumes.


Medical Physics | 2016

SU-F-T-375: Optimization of a New Co-60 Machine for Intensity Modulated Radiation Therapy: A Monte Carlo Characterization Study

O Chibani; J Fan; F Tahanout; A Eldib; C Ma

PURPOSE To provide a wide range of dose output for intensity modulation purposes while minimizing the beam penumbra for a new rotating cobalt therapy system. The highest dose rate needs to be maximized as well. METHODS The GEPTS Monte Carlo system is used to calculate the dose distribution from each tested Co-60 head for a wide range of field sizes (1×1 to 40×40 cm2). This includes the transport of photons (and secondary electrons) from the source through the collimation system (primary collimator, Y and × jaws, and MLCs) and finally in the water phantom. Photon transport includes Compton scattering (with electron binding effect), Rayleigh scattering, Photoelectric effect (with detailed simulation of fluorescence x-rays). Calculations are done for different system designs to reduce geometric penumbra and provide dose output modulation. RESULTS Taking into account different clinical requirements, the choice of a movable head (SAD = 70 to 80 cm) is made. The 120-leaf MLC (6-cm thick) entrance is at 32 cm from the bottom of the source (to reduce penumbra while allowing larger patient clearance). Three system designs (refereed here as S1-3) were simulated with different effective source sizes (2mm, 10mm and 17mm diameter). The effective point source is at mid-height of the 25-mm-long source. Using a 12000-Ci source, the designed Co-60 head can deliver a wide range of dose outputs (0.5 - 4 Gy/mn). A dose output of 2.2 Gy/mn can be delivered for a 10cm × 10cm field size with 1-cm penumbra using a 10mm effective source. CONCLUSION A new 60Co-based VMAT machine is designed to meet different clinical requirements in term of dose output and beam penumbra. Outcomes from this study can be used for the design of 60Co machines for which a renewed interest is seen.


Medical Physics | 2016

SU-F-T-649: Dosimetric Evaluation of Non-Coplanar Arc Therapy Using a Novel Rotating Gamma Ray System

A Eldib; O Chibani; G Mora; L Jin; J Fan; J Li; I Veltchev; C Ma

PURPOSE Stereotactic intra and extra-cranial body radiation therapy has evolved with advances in treatment accuracy, effective radiation dose, and parameters necessary to maximize machine capabilities. Novel gamma systems with a ring type gantry were developed having the ability to perform oblique arcs. The aim of this study is to explore the dosimetric advantages of this new system. METHODS The rotating Gamma system is named CybeRay (Cyber Medical Corp., Xian, China). It has a treatment head of 16 cobalt-60 sources focused to the isocenter, which can rotate 360° on the ring gantry and swing 35° in the superior direction. Treatment plans were generated utilizing our in-house Monte Carlo treatment planning system. A cylindrical phantom was modeled with 2mm voxel size. Dose inside the cylindrical phantom was calculated for coplanar and non-coplanar arcs. Dosimetric differences between CybeRay cobalt beams and CyberKnife 6MV beams were compared in a lung phantom and for previously treated SBRT patients. RESULTS The full width at half maxima of cross profiles in the S-I direction for the coplanar setup matched the cone sizes, while for the non-coplanar setup, FWHM was larger by 2mm for a 10mm cone and about 5mm for larger cones. In the coronal and sagittal view, coplanar beams showed elliptical shaped isodose lines, while non-coplanar beams showed circular isodose lines. Thus proper selection of the oblique angle and cone size can aid optimal dose matching to the target volume. Comparing a single 5mm cone from CybeRay to that from CyberKnife showed similar penumbra in a lung phantom but CybeRay had significant lower doses beyond lung tissues. Comparable treatment plans were obtained with CybeRay as that from CyberKnife.ConclusionThe noncoplanar multiple source arrangement of CybeRay will be of great clinical benefits for stereotactic intra and extra-cranial radiation therapy.


Medical Physics | 2016

SU-F-T-529: Dosimetric Investigation of a Rotating Gamma Ray System for ImagedGuided Modulated Arc Radiotherapy

C Ma; O Chibani; A Eldib; J Li; L Chen

PURPOSE Because of their effectiveness and efficiency, rotational arc radiotherapy (MAT) techniques have been developed on both specialty machines such as Tomotherapy and conventional linear accelerators. This work investigates a new rotating Gamma therapy system for image guided MAT and SBRT of intra/extracranial tumors. METHODS The CyberMAT system (Cyber Medical Corp., China) consists of a ring gantry with a gamma source (effective source size 1cm and 1.7cm respectively), a 120-leaf MLC, a kV CBCT and an EPID. The treatment couch provides 6-degrees-of-freedom motion compensation and the kV CBCT system has a spatial resolution of 0.4mm for target localization. The maximum dose rate is >4.0 Gy/min and the maximum field size is 40cm × 40cm. Monte Carlo simulations were used to compute dose distributions and compare with measurements. A retrospective study of 125 previously treated SBRT patients was performed to evaluate the dosimetric characteristics of CyberMAT in comparison with existing VMAT systems. RESULTS Monte Carlo results confirmed the CyberMAT design parameters including output factors and 3D dose distributions. Its beam penumbra is 5mm to 10mm for field sizes 1cm to 10cm, respectively and its isocenter accuracy is <0.5mm. Compared to the 6 MV photons of Tomotherapy and conventional linacs, Cobalt beams produce lower-energy secondary electrons that exhibit better dose properties in low-density lung tissues. Cobalt beams are ideal for peripheral lung tumors with half-arc arrangements to spare the opposite lung and other critical structures. Superior dose distributions have been obtained for brain, head and neck, breast, spine and lung tumors with half/full arc arrangements. CONCLUSION Because of the unique dosimetric properties of Cobalt sources and its accurate stereotaxy/dose delivery CyberMAT is ideally suited for image guided MAT and SBRT. Full-arc arrangements are superior for brain and H&N treatments while half-arc arrangements produce best dose distributions for thoracic tumors.


Archive | 2015

Monte Carlo study for the design of a Novel Gamma - Tomo SBRT System

G. Mora; O Chibani; A Eldib; J Li; Charlie Ma

The 60 Co beam emerging from the Gamma-Tomo source assembly was simulated in a previously study [1] and the authors reported the spectra of particles reaching the plane immediately (1mm) before the collimation system entrance. In the present work, we simulate the 60Co beam emerging from a novel Gamma-Tomo SBRT collimation system and calculate the output factors and dose rates for different source configurations and collimator sizes


Medical Physics | 2015

SU-E-T-761: TOMOMC, A Monte Carlo-Based Planning VerificationTool for Helical Tomotherapy

O Chibani; C Ma

Purpose: Present a new Monte Carlo code (TOMOMC) to calculate 3D dose distributions for patients undergoing helical tomotherapy treatments. TOMOMC performs CT-based dose calculations using the actual dynamic variables of the machine (couch motion, gantry rotation, and MLC sequences). Methods: TOMOMC is based on the GEPTS (Gama Electron and Positron Transport System) general-purpose Monte Carlo system (Chibani and Li, Med. Phys. 29, 2002, 835). First, beam models for the Hi-Art Tomotherpy machine were developed for the different beam widths (1, 2.5 and 5 cm). The beam model accounts for the exact geometry and composition of the different components of the linac head (target, primary collimator, jaws and MLCs). The beams models were benchmarked by comparing calculated Pdds and lateral/transversal dose profiles with ionization chamber measurements in water. See figures 1–3. The MLC model was tuned in such a way that tongue and groove effect, inter-leaf and intra-leaf transmission are modeled correctly. See figure 4. Results: By simulating the exact patient anatomy and the actual treatment delivery conditions (couch motion, gantry rotation and MLC sinogram), TOMOMC is able to calculate the 3D patient dose distribution which is in principal more accurate than the one from the treatment planning system (TPS) since it relies on the Monte Carlo method (gold standard). Dose volume parameters based on the Monte Carlo dose distribution can also be compared to those produced by the TPS. Attached figures show isodose lines for a H&N patient calculated by TOMOMC (transverse and sagittal views). Analysis of differences between TOMOMC and TPS is an ongoing work for different anatomic sites. Conclusion: A new Monte Carlo code (TOMOMC) was developed for Tomotherapy patient-specific QA. The next step in this project is implementing GPU computing to speed up Monte Carlo simulation and make Monte Carlo-based treatment verification a practical solution.


Medical Physics | 2015

SU-E-T-31: A Fast Finite Size Pencil Beam (FSPB) Convolution Algorithm for a New Co-60 Arc Therapy Machine

O Chibani; A Eldib; C Ma

Purpose: Present a fast Finite Size Pencil Beam (FSPB) convolution algorithm for a new Co-60 arc therapy machine. The FSPB algorithm accounts for (i) strong angular divergence (short SAD), (ii) heterogeneity effect for primary attenuation, and (iii) source energy spectrum. Methods: The FSPB algorithm is based on a 0.5×0.5-cm2 dose kernel calculated using the GEPTS (Gamma Electron and Positron Transport System) Monte Carlo code. The dose kernel is tabulated using a thin XYZ mesh (0.1 mm steps in lateral directions) for radius less than 1 cm and using an RZ mesh (with varying steps) for larger radial distance. To account for SSD effect, 11 dose kernels with SSDs varying between 30 cm to 80 cm are calculated. Maynord factor and “lateral stretching” are applied to account for differences between closest and actual SSD. Appropriate rotations and second order interpolation are used to calculate the dose from a given beamlet to a point. Results: Accuracy: Dose distributions in water with 80 cm SSD are calculated using the new FSPB convolution algorithm and full Monte Carlo simulation (gold standard). Figs 1–4 show excellent agreements between FSPB and Monte Carlo calculations for different field sizes and at different depths. The dose distribution for a prostate case is calculated using FSPB (Fig.5). Sixty conformal beams with rectum blocking are assumed. Figs 6–8 show the comparison with Monte Carlo simulation based on the same beam apertures. The excellent agreement demonstrates the accuracy of the new algorithm in handling SSD variation, oblique incidence, and scatter contribution.Speed: The FSPB convolution algorithm calculates 28 million dose points per second using a single 2.2-GHz CPU. The present algorithm is seven times faster than a similar algorithm from Gu et al. (Phys. Med. Biol. 54, 2009, 6287–6297). Conclusion: A fast and accurate FSPB convolution algorithm was developed and benchmarked.

Collaboration


Dive into the O Chibani's collaboration.

Top Co-Authors

Avatar

C Ma

Fox Chase Cancer Center

View shared research outputs
Top Co-Authors

Avatar

A Eldib

Fox Chase Cancer Center

View shared research outputs
Top Co-Authors

Avatar

J Li

Fox Chase Cancer Center

View shared research outputs
Top Co-Authors

Avatar

L Chen

Fox Chase Cancer Center

View shared research outputs
Top Co-Authors

Avatar

G Mora

University of Lisbon

View shared research outputs
Top Co-Authors

Avatar

L Jin

Fox Chase Cancer Center

View shared research outputs
Top Co-Authors

Avatar

C.-M. Ma

Fox Chase Cancer Center

View shared research outputs
Top Co-Authors

Avatar

I Veltchev

Fox Chase Cancer Center

View shared research outputs
Top Co-Authors

Avatar

R Price

Fox Chase Cancer Center

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge