Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Omar Nyabi is active.

Publication


Featured researches published by Omar Nyabi.


The EMBO Journal | 2010

Increased skeletal VEGF enhances β-catenin activity and results in excessively ossified bones

Christa Maes; Steven Goossens; Sonia Bartunkova; Benjamin Drogat; Lieve Coenegrachts; Ingrid Stockmans; Karen Moermans; Omar Nyabi; Katharina Haigh; Michael Naessens; Lieven Haenebalcke; Jan Tuckermann; Marc Tjwa; Peter Carmeliet; Vice Mandic; Jean-Pierre David; Axel Behrens; Andras Nagy; Geert Carmeliet; Jody J. Haigh

Vascular endothelial growth factor (VEGF) and β‐catenin both act broadly in embryogenesis and adulthood, including in the skeletal and vascular systems. Increased or deregulated activity of these molecules has been linked to cancer and bone‐related pathologies. By using novel mouse models to locally increase VEGF levels in the skeleton, we found that embryonic VEGF over‐expression in osteo‐chondroprogenitors and their progeny largely pheno‐copied constitutive β‐catenin activation. Adult induction of VEGF in these cell populations dramatically increased bone mass, associated with aberrant vascularization, bone marrow fibrosis and haematological anomalies. Genetic and pharmacological interventions showed that VEGF increased bone mass through a VEGF receptor 2‐ and phosphatidyl inositol 3‐kinase‐mediated pathway inducing β‐catenin transcriptional activity in endothelial and osteoblastic cells, likely through modulation of glycogen synthase kinase 3‐β phosphorylation. These insights into the actions of VEGF in the bone and marrow environment underscore its power as pleiotropic bone anabolic agent but also warn for caution in its therapeutic use. Moreover, the finding that VEGF can modulate β‐catenin activity may have widespread physiological and clinical ramifications.


Nucleic Acids Research | 2009

Efficient mouse transgenesis using Gateway-compatible ROSA26 locus targeting vectors and F1 hybrid ES cells

Omar Nyabi; Michael Naessens; Katharina Haigh; Agnieszka Gembarska; Steven Goossens; Marion M. Maetens; Sarah De Clercq; Benjamin Drogat; Lieven Haenebalcke; Sonia Bartunkova; Ilse De Vos; Bram De Craene; Mansour Karimi; Geert Berx; Andras Nagy; Pierre Hilson; Jean-Christophe Marine; Jody J. Haigh

The ability to rapidly and efficiently generate reliable Cre/loxP conditional transgenic mice would greatly complement global high-throughput gene targeting initiatives aimed at identifying gene function in the mouse. We report here the generation of Cre/loxP conditional ROSA26-targeted ES cells within 3–4 weeks by using Gateway® cloning to build the target vectors. The cDNA of the gene of interest can be expressed either directly by the ROSA26 promoter providing a moderate level of expression or by a CAGG promoter placed in the ROSA26 locus providing higher transgene expression. Utilization of F1 hybrid ES cells with exceptional developmental potential allows the production of germ line transmitting, fully or highly ES cell-derived mice by aggregation of cells with diploid embryos. The presented streamlined procedures accelerate the examination of phenotypical consequences of transgene expression. It also provides a unique tool for comparing the biological activity of polymorphic or splice variants of a gene, or products of different genes functioning in the same or parallel pathways in an overlapping manner.


Cell Transplantation | 2011

In vitro differentiated adult human liver progenitor cells display mature hepatic metabolic functions : a potential tool for in vitro pharmacotoxicological testing.

Dung Ngoc Khuu; Isabelle Scheers; Sabrina Ehnert; Nawal Jazouli; Omar Nyabi; Pedro Buc-Calderon; Ann Meulemans; Andreas K. Nussler; Etienne Sokal; Mustapha Najimi

The potential use of stem/progenitor cells as alternative cell sources to mature hepatocytes remains basically dependent on their ability to exhibit some, if not all, the metabolic liver functions. In the current study, four major liver functions were investigated in adult derived human liver stem/progenitor cell (ADHLSCs) populations submitted to in vitro hepatogenic differentiation: gluconeogenesis, ammonia detoxification, and activity of phase I and phase II drug-metabolizing enzymes. These acquired hepatic activities were compared to those of primary adult human hepatocytes, the standard reference. Amino acid content was also investigated after hepatogenic differentiation. Differentiated ADHLSCs display higher de novo synthesis of glucose correlated to an increased activity of glucose-6 phosphatase and mRNA expression of key related enzymes. Differentiated ADHLSCs are also able to metabolize ammonium chloride and to produce urea. This was correlated to an increase in the mRNA expression of relevant key enzymes such arginase. With respect to drug metabolism, differentiated ADHLSCs express mRNAs of all the major cytochromes investigated, among which the CYP3A4 isoform (the most important drug-metabolizing enzyme). Such increased expression is correlated to an enhanced phase I activity as independently demonstrated using fluorescence-based assays. Phase II enzyme activity and amino acid levels also show a significant enhancement in differentiated ADHLSCs. The current study, according to data independently obtained in different labs, demonstrates that in vitro differentiated ADHLSCs are able to display advanced liver metabolic functions supporting the possibility to develop them as potential alternatives to primary hepatocytes for in vitro settings.


PLOS ONE | 2012

Bivalirudin in Combination with Heparin to Control Mesenchymal Cell Procoagulant Activity

Xavier Stéphenne; Emanuele Nicastro; Stéphane Eeckhoudt; Cédric Hermans; Omar Nyabi; Catherine Lombard; Mustapha Najimi; Etienne Sokal

Islet and hepatocyte transplantation are associated with tissue factor-dependent activation of coagulation which elicits instant blood mediated inflammatory reaction, thereby contributing to a low rate of engraftment. The aim of this study was i) to evaluate the procoagulant activity of human adult liver-derived mesenchymal progenitor cells (hALPCs), ii) to compare it to other mesenchymal cells of extra-hepatic (bone marrow mesenchymal stem cells and skin fibroblasts) or liver origin (liver myofibroblasts), and iii) to determine the ways this activity could be modulated. Using a whole blood coagulation test (thromboelastometry), we demonstrated that all analyzed cell types exhibit procoagulant activity. The hALPCs pronounced procoagulant activity was associated with an increased tissue factor and a decreased tissue factor pathway inhibitor expression as compared with hepatocytes. At therapeutic doses, the procoagulant effect of hALPCs was inhibited by neither antithrombin activators nor direct factor Xa inhibitor or direct thrombin inhibitors individually. However, concomitant administration of an antithrombin activator or direct factor Xa inhibitor and direct thrombin inhibitor proved to be a particularly effective combination for controlling the procoagulant effects of hALPCs both in vitro and in vivo. The results suggest that this dual antithrombotic therapy should also improve the efficacy of cell transplantation in humans.


Cell Transplantation | 2013

Adult human liver mesenchymal stem/progenitor cells participate to mouse liver regeneration after hepatectomy.

Dung Ngoc Khuu; Omar Nyabi; Cédric Maerckx; Etienne Sokal; Mustapha Najimi

The advances in stem cell science have promoted research on their use in liver regenerative medicine. Beyond the demonstration of their ability to display metabolic functions in vitro, candidate cells should demonstrate achievable in situ differentiation and ability to participate to liver repopulation. In this work, we studied the in vivo behavior of adult liver mesenchymal stem/progenitor cells (ADHLSCs) after transplantation into immunodeficient mice. The kinetics of engraftment and in situ hepatogenic differentiation were analyzed. Response of transplanted ADHLSCs to regenerative stimulus was also evaluated. Nondifferentiated ADHLSCs were intrasplenically transplanted into SCID mice. Efficiency of transplantation was evaluated at the level of engraftment and in situ differentiation using immunohistochemistry, in situ hybridization, and RT-PCR. After bromodeoxyuridine (BrdU) implantation, proliferation of transplanted ADHLSCs in response to 20% hepatectomy was assessed using immunohistochemistry. We demonstrated that ADHLSC engraftment in the SCID mouse liver was low but remained stable up to 60 days posttransplantation, when albumin (ALB) immunopositive ADHLSCs were still detected and organized as clusters. Coexpression of ornithine transcarbamylase (OTC) demonstrated ADHLSC in situ differentiation mostly near the hepatic portal vein. After 20% hepatectomy on 1 month transplanted mice, the percentage of BrdU and human ALB immunopositive ADHLSCs increased from 3 to 28 days post-BrdU implantation to reach 31.3 ± 5.4% of the total analyzed human cells. In the current study, we demonstrate that transplanted ADHLSCs are able to differentiate in the non preconditioned SCID mouse liver mainly in the periportal area. In response to partial hepatectomy, integrated ADHLSCs proliferate and participate to recipient mouse liver regeneration.


The Journal of Neuroscience | 2012

Opposing Roles for Hoxa2 and Hoxb2 in Hindbrain Oligodendrocyte Patterning

Andrés Miguez; Sebastien Ducret; Thomas Di Meglio; Carlos Parras; Hatem Hmidan; Céline Haton; Sowmya Sekizar; Abdelkrim Mannioui; Marie Vidal; Aurelien Kerever; Omar Nyabi; Jody J. Haigh; Bernard Zalc; Filippo M. Rijli; Jean-Léon Thomas

Oligodendrocytes are the myelin-forming cells of the vertebrate CNS. Little is known about the molecular control of region-specific oligodendrocyte development. Here, we show that oligodendrogenesis in the mouse rostral hindbrain, which is organized in a metameric series of rhombomere-derived (rd) territories, follows a rhombomere-specific pattern, with extensive production of oligodendrocytes in the pontine territory (r4d) and delayed and reduced oligodendrocyte production in the prepontine region (r2d, r3d). We demonstrate that segmental organization of oligodendrocytes is controlled by Hox genes, namely Hoxa2 and Hoxb2. Specifically, Hoxa2 loss of function induced a dorsoventral enlargement of the Olig2/Nkx2.2-expressing oligodendrocyte progenitor domain, whereas conditional Hoxa2 overexpression in the Olig2+ domain inhibited oligodendrogenesis throughout the brain. In contrast, Hoxb2 deletion resulted in a reduction of the pontine oligodendrogenic domain. Compound Hoxa2−/−/Hoxb2−/− mutant mice displayed the phenotype of Hoxb2−/− mutants in territories coexpressing Hoxa2 and Hoxb2 (rd3, rd4), indicating that Hoxb2 antagonizes Hoxa2 during rostral hindbrain oligodendrogenesis. This study provides the first in vivo evidence that Hox genes determine oligodendrocyte regional identity in the mammalian brain.


Blood | 2010

Vegf regulates embryonic erythroid development through Gata1 modulation

Benjamin Drogat; Joanna Kalucka; Laura Gutierrez; Hamida Hammad; Steven Goossens; Morvarid Farhang Ghahremani; Sonia Bartunkova; Katharina Haigh; Kim Deswarte; Omar Nyabi; Michael Naessens; Napoleone Ferrara; Ursula Klingmüller; Bart N. Lambrecht; Andras Nagy; Sjaak Philipsen; Jody J. Haigh

To determine the role of vascular endothelial growth factor (Vegf) in embryonic erythroid development we have deleted or overexpressed Vegf specifically in the erythroid lineage using the EpoR-iCre transgenic line in combination with Cre/loxP conditional gain and loss of function Vegf alleles. ROSA26 promoter-based expression of the Vegf(164) isoform in the early erythroid lineage resulted in a differentiation block of primitive erythroid progenitor (EryP) development and a partial block in definitive erythropoiesis between the erythroid burst-forming unit and erythroid colony-forming unit stages. Decreased mRNA expression levels of the key erythroid transcription factor Gata1 were causally linked to this phenotype. Conditional deletion of Vegf within the erythroid lineage was associated with increased Gata1 levels and increased erythroid differentiation. Expression of a ROSA26-based GATA2 transgene rescued Gata1 mRNA levels and target genes and restored erythroid differentiation in our Vegf gain of function model. These results demonstrate that Vegf modulates Gata1 expression levels in vivo and provides new molecular insight into Vegfs ability to modulate erythropoiesis.


Stem Cells and Development | 2014

Downregulation of Sox9 Expression Associates with Hepatogenic Differentiation of Human Liver Mesenchymal Stem/Progenitor Cells

Massimiliano Paganelli; Omar Nyabi; Brice Sid; Jonathan Evraerts; Imane El Malmi; Yves Heremans; Laurent Dollé; Carley Benton; Pedro Buc Calderon; Leo A. van Grunsven; Harry Heimberg; David Campard; Etienne Sokal; Mustapha Najimi

Understanding the mechanisms triggering hepatogenic differentiation of stem/progenitor cells would be useful for studying postnatal liver regeneration and development of liver cell therapies. Many evidences support the involvement of Sox9 transcription factor in liver development. Here, we investigate the possibility of liver mesenchymal stem/progenitor cells to constitutively express Sox9 by using reverse transcription-quantitative polymerase chain reaction, immunocytochemistry, and western blotting. The involvement of Sox9 in hepatogenic differentiation was assessed by following its expression at different steps of the process, evaluating the impact of its altered expression, and analyzing its expression in human liver disease specimen. Liver mesenchymal stem/progenitor cells constitutively express Sox9 at both the mRNA and protein levels. Upon hepatogenic differentiation, Sox9 expression is downregulated mainly in the maturation step after oncostatin M treatment. Induction of Sox9 expression using transforming growth factor beta is accompanied with a decrease of the quality of hepatogenic differentiation. Blunting Sox9 expression using specific ShRNA clearly alters the levels of several hepatic markers, an effect confirmed in HepG2 cells. In human liver disease specimen, Sox9 expression is enhanced at both the mRNA and protein levels compared with healthy donors. The current data demonstrate that Sox9 may play a pivotal role in hepatocyte lineage development, including adult liver mesenchymal stem/progenitor cells. Further studies on the identification of pathways regulated by or regulating Sox9 will certainly gain insight into the molecular networks controlling hepatogenic differentiation.


Journal of Pediatric Endocrinology and Metabolism | 2014

Adult human liver mesenchymal progenitor cells express phenylalanine hydroxylase

Julien Baruteau; Omar Nyabi; Mustapha Najimi; Maarten Fauvart; Etienne Sokal

Abstract Phenylketonuria (PKU) is one of the most prevalent inherited metabolic diseases and is accountable for a severe encephalopathy by progressive intoxication of the brain by phenylalanine. This results from an ineffective L-phenylalanine hydroxylase enzyme (PAH) due to a mutated phenylalanine hydroxylase (PAH) gene. Neonatal screening programs allow an early dietetic treatment with restrictive phenylalanine intake. This diet prevents most of the neuropsychological disabilities but remains challenging for lifelong compliance. Adult-derived human liver progenitor cells (ADHLPC) are a pool of precursors that can differentiate into hepatocytes. We aim to study PAH expression and PAH activity in a differenciated ADHLPC. ADHLPC were isolated from human hepatocyte primary culture of two different donors and differenciated under specific culture conditions. We demonstrated the high expression of PAH and a large increase of PAH activity in differenciated LPC. The age of the donor, the cellular viability after liver digestion and cryopreservation affects PAH activity. ADHLPC might therefore be considered as a suitable source for cell therapy in PKU.


World Journal of Gastroenterology | 2012

Hepato-biliary profile of potential candidate liver progenitor cells from healthy rat liver

Cédric Maerckx; Isabelle Scheers; Tatiana Tondreau; David Campard; Omar Nyabi; Mustapha Najimi; Etienne Sokal

AIM To evaluate the presence of progenitor cells in healthy adult rat liver displaying the equivalent advanced hepatogenic profile as that obtained in human. METHODS Rat fibroblastic-like liver derived cells (rFLDC) were obtained from collagenase-isolated liver cell suspensions and characterized and their phenotype profile determined using flow cytometry, immunocytochemistry, reverse transcription polymerase chain reaction and functional assays. RESULTS rFLDC exhibit fibroblastoid morphology, express mesenchymal (CD73, CD90, vimentin, α-smooth muscle actin), hepatocyte (UGT1A1, CK8) and biliary (CK19) markers. Moreover, these cells are able to store glycogen, and have glucose 6 phosphatase activity, but not UGT1A1 activity. Under the hepatogenic differentiation protocol, rFLDC display an up-regulation of hepatocyte markers expression (albumin, tryptophan 2,3-dioxygenase, G6Pase) correlated to a down-regulation of the expression of the biliary marker CK19. CONCLUSION Advanced hepatic features observed in human liver progenitor cells could not be demonstrated in rFLDC. However, we demonstrated the presence of an original rodent hepato-biliary cell type.

Collaboration


Dive into the Omar Nyabi's collaboration.

Top Co-Authors

Avatar

Etienne Sokal

Université catholique de Louvain

View shared research outputs
Top Co-Authors

Avatar

Mustapha Najimi

Université catholique de Louvain

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge