Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sonia Bartunkova is active.

Publication


Featured researches published by Sonia Bartunkova.


The EMBO Journal | 2010

Increased skeletal VEGF enhances β-catenin activity and results in excessively ossified bones

Christa Maes; Steven Goossens; Sonia Bartunkova; Benjamin Drogat; Lieve Coenegrachts; Ingrid Stockmans; Karen Moermans; Omar Nyabi; Katharina Haigh; Michael Naessens; Lieven Haenebalcke; Jan Tuckermann; Marc Tjwa; Peter Carmeliet; Vice Mandic; Jean-Pierre David; Axel Behrens; Andras Nagy; Geert Carmeliet; Jody J. Haigh

Vascular endothelial growth factor (VEGF) and β‐catenin both act broadly in embryogenesis and adulthood, including in the skeletal and vascular systems. Increased or deregulated activity of these molecules has been linked to cancer and bone‐related pathologies. By using novel mouse models to locally increase VEGF levels in the skeleton, we found that embryonic VEGF over‐expression in osteo‐chondroprogenitors and their progeny largely pheno‐copied constitutive β‐catenin activation. Adult induction of VEGF in these cell populations dramatically increased bone mass, associated with aberrant vascularization, bone marrow fibrosis and haematological anomalies. Genetic and pharmacological interventions showed that VEGF increased bone mass through a VEGF receptor 2‐ and phosphatidyl inositol 3‐kinase‐mediated pathway inducing β‐catenin transcriptional activity in endothelial and osteoblastic cells, likely through modulation of glycogen synthase kinase 3‐β phosphorylation. These insights into the actions of VEGF in the bone and marrow environment underscore its power as pleiotropic bone anabolic agent but also warn for caution in its therapeutic use. Moreover, the finding that VEGF can modulate β‐catenin activity may have widespread physiological and clinical ramifications.


Nucleic Acids Research | 2009

Efficient mouse transgenesis using Gateway-compatible ROSA26 locus targeting vectors and F1 hybrid ES cells

Omar Nyabi; Michael Naessens; Katharina Haigh; Agnieszka Gembarska; Steven Goossens; Marion M. Maetens; Sarah De Clercq; Benjamin Drogat; Lieven Haenebalcke; Sonia Bartunkova; Ilse De Vos; Bram De Craene; Mansour Karimi; Geert Berx; Andras Nagy; Pierre Hilson; Jean-Christophe Marine; Jody J. Haigh

The ability to rapidly and efficiently generate reliable Cre/loxP conditional transgenic mice would greatly complement global high-throughput gene targeting initiatives aimed at identifying gene function in the mouse. We report here the generation of Cre/loxP conditional ROSA26-targeted ES cells within 3–4 weeks by using Gateway® cloning to build the target vectors. The cDNA of the gene of interest can be expressed either directly by the ROSA26 promoter providing a moderate level of expression or by a CAGG promoter placed in the ROSA26 locus providing higher transgene expression. Utilization of F1 hybrid ES cells with exceptional developmental potential allows the production of germ line transmitting, fully or highly ES cell-derived mice by aggregation of cells with diploid embryos. The presented streamlined procedures accelerate the examination of phenotypical consequences of transgene expression. It also provides a unique tool for comparing the biological activity of polymorphic or splice variants of a gene, or products of different genes functioning in the same or parallel pathways in an overlapping manner.


Blood | 2011

The EMT regulator Zeb2/Sip1 is essential for murine embryonic hematopoietic stem/progenitor cell differentiation and mobilization

Steven Goossens; Viktor Janzen; Sonia Bartunkova; Tomomasa Yokomizo; Benjamin Drogat; Mihaela Crisan; Katharina Haigh; Eve Seuntjens; Lieve Umans; Tamara Riedt; Pieter Bogaert; Lieven Haenebalcke; Geert Berx; Elaine Dzierzak; Danny Huylebroeck; Jody J. Haigh

Zeb2 (Sip1/Zfhx1b) is a member of the zinc-finger E-box-binding (ZEB) family of transcriptional repressors previously demonstrated to regulate epithelial-to-mesenchymal transition (EMT) processes during embryogenesis and tumor progression. We found high Zeb2 mRNA expression levels in HSCs and hematopoietic progenitor cells (HPCs), and examined Zeb2 function in hematopoiesis through a conditional deletion approach using the Tie2-Cre and Vav-iCre recombination mouse lines. Detailed cellular analysis demonstrated that Zeb2 is dispensable for hematopoietic cluster and HSC formation in the aorta-gonadomesonephros region of the embryo, but is essential for normal HSC/HPC differentiation. In addition, Zeb2-deficient HSCs/HPCs fail to properly colonize the fetal liver and/or bone marrow and show enhanced adhesive properties associated with increased β1 integrin and Cxcr4 expression. Moreover, deletion of Zeb2 resulted in embryonic (Tie2-Cre) and perinatal (Vav-icre) lethality due to severe cephalic hemorrhaging and decreased levels of angiopoietin-1 and, subsequently, improper pericyte coverage of the cephalic vasculature. These results reveal essential roles for Zeb2 in embryonic hematopoiesis and are suggestive of a role for Zeb2 in hematopoietic-related pathologies in the adult.


Cell Death & Differentiation | 2013

p53 promotes VEGF expression and angiogenesis in the absence of an intact p21-Rb pathway.

M Farhang Ghahremani; Steven Goossens; David Nittner; X Bisteau; Sonia Bartunkova; Aleksandra Zwolinska; Paco Hulpiau; Katharina Haigh; Lieven Haenebalcke; Benjamin Drogat; Aart G. Jochemsen; P P Roger; J-C Marine; Jody J. Haigh

There is growing evidence that the p53 tumour suppressor downregulates vascular endothelial growth factor (VEGF) expression, although the underlying mechanisms remain unclear and controversial. Here we provide insights from in vitro experiments and in vivo xenotransplantation assays that highlight a dual role for p53 in regulating VEGF during hypoxia. Unexpectedly, and for the first time, we demonstrate that p53 rapidly induces VEGF transcription upon hypoxia exposure by binding, in an HIF-1α-dependent manner, to a highly conserved and functional p53-binding site within the VEGF promoter. However, during sustained hypoxia, p53 indirectly downregulates VEGF expression via the retinoblastoma (Rb) pathway in a p21-dependent manner, which is distinct from its role in cell-cycle regulation. Our findings have important implications for cancer therapy, especially for tumours that harbour wild-type TP53 and a dysfunctional Rb pathway.


Journal of Microscopy | 2015

Developing 3D SEM in a broad biological context

Anna Kremer; Saskia Lippens; Sonia Bartunkova; Bob Asselbergh; Cédric Blanpain; Matyáš Fendrych; Alain Goossens; Matthew Holt; Sophie Janssens; Michiel Krols; J-C Larsimont; C Mc Guire; Moritz K. Nowack; Xavier Saelens; A Schertel; Brigitte Schepens; Michal Slezak; Véronique Timmerman; C Theunis; R Van Brempt; Y Visser; Christopher J. Guérin

When electron microscopy (EM) was introduced in the 1930s it gave scientists their first look into the nanoworld of cells. Over the last 80 years EM has vastly increased our understanding of the complex cellular structures that underlie the diverse functions that cells need to maintain life. One drawback that has been difficult to overcome was the inherent lack of volume information, mainly due to the limit on the thickness of sections that could be viewed in a transmission electron microscope (TEM). For many years scientists struggled to achieve three‐dimensional (3D) EM using serial section reconstructions, TEM tomography, and scanning EM (SEM) techniques such as freeze‐fracture. Although each technique yielded some special information, they required a significant amount of time and specialist expertise to obtain even a very small 3D EM dataset. Almost 20 years ago scientists began to exploit SEMs to image blocks of embedded tissues and perform serial sectioning of these tissues inside the SEM chamber. Using first focused ion beams (FIB) and subsequently robotic ultramicrotomes (serial block‐face, SBF‐SEM) microscopists were able to collect large volumes of 3D EM information at resolutions that could address many important biological questions, and do so in an efficient manner. We present here some examples of 3D EM taken from the many diverse specimens that have been imaged in our core facility. We propose that the next major step forward will be to efficiently correlate functional information obtained using light microscopy (LM) with 3D EM datasets to more completely investigate the important links between cell structures and their functions.


Nature Communications | 2015

ZEB2 drives immature T-cell lymphoblastic leukaemia development via enhanced tumour-initiating potential and IL-7 receptor signalling

Steven Goossens; Enrico Radaelli; Odile Blanchet; Kaat Durinck; Joni Van der Meulen; Sofie Peirs; Tom Taghon; Cedric Tremblay; Magdaline Costa; Morvarid Farhang Ghahremani; Jelle De Medts; Sonia Bartunkova; Katharina Haigh; Claire Schwab; Natalie Farla; Tim Pieters; Filip Matthijssens; Nadine Van Roy; J. Adam Best; Kim Deswarte; Pieter Bogaert; Catherine L. Carmichael; Adam Samuel Rickard; Santi Suryani; Lauryn S. Bracken; Raed Alserihi; Kirsten Canté-Barrett; Lieven Haenebalcke; Emmanuelle Clappier; Pieter Rondou

Early T-cell precursor leukaemia (ETP-ALL) is a high-risk subtype of human leukaemia that is poorly understood at the molecular level. Here we report translocations targeting the zinc finger E-box-binding transcription factor ZEB2 as a recurrent genetic lesion in immature/ETP-ALL. Using a conditional gain-of-function mouse model, we demonstrate that sustained Zeb2 expression initiates T-cell leukaemia. Moreover, Zeb2-driven mouse leukaemia exhibit some features of the human immature/ETP-ALL gene expression signature, as well as an enhanced leukaemia-initiation potential and activated Janus kinase (JAK)/signal transducers and activators of transcription (STAT) signalling through transcriptional activation of IL7R. This study reveals ZEB2 as an oncogene in the biology of immature/ETP-ALL and paves the way towards pre-clinical studies of novel compounds for the treatment of this aggressive subtype of human T-ALL using our Zeb2-driven mouse model.


Blood | 2010

Vegf regulates embryonic erythroid development through Gata1 modulation

Benjamin Drogat; Joanna Kalucka; Laura Gutierrez; Hamida Hammad; Steven Goossens; Morvarid Farhang Ghahremani; Sonia Bartunkova; Katharina Haigh; Kim Deswarte; Omar Nyabi; Michael Naessens; Napoleone Ferrara; Ursula Klingmüller; Bart N. Lambrecht; Andras Nagy; Sjaak Philipsen; Jody J. Haigh

To determine the role of vascular endothelial growth factor (Vegf) in embryonic erythroid development we have deleted or overexpressed Vegf specifically in the erythroid lineage using the EpoR-iCre transgenic line in combination with Cre/loxP conditional gain and loss of function Vegf alleles. ROSA26 promoter-based expression of the Vegf(164) isoform in the early erythroid lineage resulted in a differentiation block of primitive erythroid progenitor (EryP) development and a partial block in definitive erythropoiesis between the erythroid burst-forming unit and erythroid colony-forming unit stages. Decreased mRNA expression levels of the key erythroid transcription factor Gata1 were causally linked to this phenotype. Conditional deletion of Vegf within the erythroid lineage was associated with increased Gata1 levels and increased erythroid differentiation. Expression of a ROSA26-based GATA2 transgene rescued Gata1 mRNA levels and target genes and restored erythroid differentiation in our Vegf gain of function model. These results demonstrate that Vegf modulates Gata1 expression levels in vivo and provides new molecular insight into Vegfs ability to modulate erythropoiesis.


PLOS ONE | 2013

Beta-Actin Is Involved in Modulating Erythropoiesis during Development by Fine-Tuning Gata2 Expression Levels.

Davina Tondeleir; Benjamin Drogat; Karolina Slowicka; Karima Bakkali; Sonia Bartunkova; Steven Goossens; Jody J. Haigh; Christophe Ampe

The functions of actin family members during development are poorly understood. To investigate the role of beta-actin in mammalian development, a beta-actin knockout mouse model was used. Homozygous beta-actin knockout mice are lethal at embryonic day (E)10.5. At E10.25 beta-actin knockout embryos are growth retarded and display a pale yolk sac and embryo proper that is suggestive of altered erythropoiesis. Here we report that lack of beta-actin resulted in a block of primitive and definitive hematopoietic development. Reduced levels of Gata2, were associated to this phenotype. Consistently, ChIP analysis revealed multiple binding sites for beta-actin in the Gata2 promoter. Gata2 mRNA levels were almost completely rescued by expression of an erythroid lineage restricted ROSA26-promotor based GATA2 transgene. As a result, erythroid differentiation was restored and the knockout embryos showed significant improvement in yolk sac and embryo vascularization. These results provide new molecular insights for a novel function of beta-actin in erythropoiesis by modulating the expression levels of Gata2 in vivo.


Cell Cycle | 2014

Loss of autocrine endothelial-derived VEGF significantly reduces hemangiosarcoma development in conditional p53-deficient mice

Morvarid Farhang Ghahremani; Enrico Radaelli; Katharina Haigh; Sonia Bartunkova; Lieven Haenebalcke; Jean-Christophe Marine; Steven Goossens; Jody J. Haigh

Malignant transformation of the endothelium is rare, and hemangiosarcomas comprise only 1% of all sarcomas. For this reason and due to the lack of appropriate mouse models, the genetic mechanisms of malignant endothelial transformation are poorly understood. Here, we describe a hemangiosarcoma mouse model generated by deleting p53 specifically in the endothelial and hematopoietic lineages. This strategy led to a high incidence of hemangiosarcoma, with an average latency of 25 weeks. To study the in vivo roles of autocrine or endothelial cell autonomous VEGF signaling in the initiation and/or progression of hemangiosarcomas, we genetically deleted autocrine endothelial sources of VEGF in this mouse model. We found that loss of even a single conditional VEGF allele results in substantial rescue from endothelial cell transformation. These findings highlight the important role of threshold levels of autocrine VEGF signaling in endothelial malignancies and suggest a new approach for hemangiosarcoma treatment using targeted autocrine VEGF inhibition.


Journal of Investigative Dermatology | 2018

Keratinocyte-Specific Ablation of RIPK4 Allows Epidermal Cornification but Impairs Skin Barrier Formation

Corinne Urwyler-Rösselet; Giel Tanghe; Kirsten Leurs; Barbara Gilbert; Riet De Rycke; Michiel De Bruyne; Saskia Lippens; Sonia Bartunkova; Philippe De Groote; Carien M. Niessen; Marek Haftek; Peter Vandenabeele; Wim Declercq

In humans, receptor-interacting protein kinase 4 (RIPK4) mutations can lead to the autosomal recessive Bartsocas-Papas and popliteal pterygium syndromes, which are characterized by severe skin defects, pterygia, as well as clefting. We show here that the epithelial fusions observed in RIPK4 full knockout (KO) mice are E-cadherin dependent, as keratinocyte-specific deletion of E-cadherin in RIPK4 full KO mice rescued the tail-to-body fusion and fusion of oral epithelia. To elucidate RIPK4 function in epidermal differentiation and development, we generated epidermis-specific RIPK4 KO mice (RIPK4EKO). In contrast to RIPK4 full KO epidermis, RIPK4EKO epidermis was normally stratified and the outside-in skin barrier in RIPK4EKO mice was largely intact at the trunk, in contrast to the skin covering the head and the outer end of the extremities. However, RIPK4EKO mice die shortly after birth due to excessive water loss because of loss of tight junction protein claudin-1 localization at the cell membrane, which results in tight junction leakiness. In contrast, mice with keratinocyte-specific RIPK4 deletion during adult life remain viable. Furthermore, our data indicate that epidermis-specific deletion of RIPK4 results in delayed keratinization and stratum corneum maturation and altered lipid organization and is thus indispensable during embryonic development for the formation of a functional inside-out epidermal barrier.

Collaboration


Dive into the Sonia Bartunkova's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Omar Nyabi

Université catholique de Louvain

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kim Deswarte

Ghent University Hospital

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge