Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Opal S. Chen is active.

Publication


Featured researches published by Opal S. Chen.


Nature | 2005

Deficiency of glutaredoxin 5 reveals Fe-S clusters are required for vertebrate haem synthesis.

Rebecca A. Wingert; Jenna L. Galloway; Bruce Barut; Helen Foott; Paula G. Fraenkel; Jennifer L. Axe; Gerhard J. Weber; Kimberly Dooley; Alan J. Davidson; Barry H. Paw; George C. Shaw; Paul D. Kingsley; James Palis; Heidi L. Schubert; Opal S. Chen; Jerry Kaplan; Leonard I. Zon

Iron is required to produce haem and iron–sulphur (Fe–S) clusters, processes thought to occur independently. Here we show that the hypochromic anaemia in shiraz (sir) zebrafish mutants is caused by deficiency of glutaredoxin 5 (grx5), a gene required in yeast for Fe–S cluster assembly. We found that grx5 was expressed in erythroid cells of zebrafish and mice. Zebrafish grx5 rescued the assembly of Δgrx5 yeast Fe–S, showing that the biochemical function of grx5 is evolutionarily conserved. In contrast to yeast, vertebrates use iron regulatory protein 1 (IRP1) to sense intracellular iron and regulate mRNA stability or the translation of iron metabolism genes. We found that loss of Fe–S cluster assembly in sir animals activated IRP1 and blocked haem biosynthesis catalysed by aminolaevulinate synthase 2 (ALAS2). Overexpression of ALAS2 RNA without the 5′ iron response element that binds IRP1 rescued sir embryos, whereas overexpression of ALAS2 including the iron response element did not. Further, antisense knockdown of IRP1 restored sir embryo haemoglobin synthesis. These findings uncover a connection between haem biosynthesis and Fe–S clusters, indicating that haemoglobin production in the differentiating red cell is regulated through Fe–S cluster assembly.


Journal of Biological Chemistry | 2008

Identification of FRA1 and FRA2 as Genes Involved in Regulating the Yeast Iron Regulon in Response to Decreased Mitochondrial Iron-Sulfur Cluster Synthesis

Attila Kumánovics; Opal S. Chen; Liangtao Li; Dustin Bagley; Erika M. Adkins; Huilan Lin; Nin N. Dingra; Caryn E. Outten; Greg Keller; Dennis R. Winge; Diane M. Ward; Jerry Kaplan

The nature of the connection between mitochondrial Fe-S cluster synthesis and the iron-sensitive transcription factor Aft1 in regulating the expression of the iron transport system in Saccharomyces cerevisiae is not known. Using a genetic screen, we identified two novel cytosolic proteins, Fra1 and Fra2, that are part of a complex that interprets the signal derived from mitochondrial Fe-S synthesis. We found that mutations in FRA1 (YLL029W) and FRA2 (YGL220W) led to an increase in transcription of the iron regulon. In cells incubated in high iron medium, deletion of either FRA gene results in the translocation of the low iron-sensing transcription factor Aft1 into the nucleus, where it occupies the FET3 promoter. Deletion of either FRA gene has the same effect on transcription as deletion of both genes and is not additive with activation of the iron regulon due to loss of mitochondrial Fe-S cluster synthesis. These observations suggest that the FRA proteins are in the same signal transduction pathway as Fe-S cluster synthesis. We show that Fra1 and Fra2 interact in the cytosol in an iron-independent fashion. The Fra1-Fra2 complex binds to Grx3 and Grx4, two cytosolic monothiol glutaredoxins, in an iron-independent fashion. These results show that the Fra-Grx complex is an intermediate between the production of mitochondrial Fe-S clusters and transcription of the iron regulon.


Proceedings of the National Academy of Sciences of the United States of America | 2002

Inhibition of Fe-S cluster biosynthesis decreases mitochondrial iron export: Evidence that Yfh1p affects Fe-S cluster synthesis

Opal S. Chen; Shawn Hemenway; Jerry Kaplan

Decreased expression of Yfh1p in the budding yeast, Saccharomyces cerevisiae, and the orthologous human gene frataxin results in respiratory deficiency and mitochondrial iron accumulation. The absence of Yfh1p decreases mitochondrial iron export. We demonstrate that decreased expression of Nfs1p, the yeast cysteine desulfurase that plays a central role in Fe-S cluster synthesis, also results in mitochondrial iron accumulation due to decreased export of mitochondrial iron. In the absence of Yfh1p, activity of Fe-S-containing enzymes (aconitase, succinate dehydrogenase) is decreased, whereas the activity of a non-Fe-S-containing enzyme (malate dehydrogenase) is unaffected. Aconitase protein was abundant even though the activity of aconitase was decreased in both aerobic and anaerobic conditions. These results demonstrate a direct role of Yfh1p in the formation of Fe-S clusters and indicate that mitochondrial iron export requires Fe-S cluster biosynthesis.


Proceedings of the National Academy of Sciences of the United States of America | 2017

LEM2 recruits CHMP7 for ESCRT-mediated nuclear envelope closure in fission yeast and human cells

Mingyu Gu; Dollie Lajoie; Opal S. Chen; Alexander von Appen; Mark S. Ladinsky; Michael J. Redd; Linda S. Nikolova; Pamela J. Bjorkman; Wesley I. Sundquist; Katharine S. Ullman; Adam Frost

Significance The molecular mechanism for sealing newly formed nuclear envelopes was unclear until the recent discovery that endosomal sorting complexes required for transport III (ESCRT-III) proteins mediate this process. Cmp7p (CHMP7), in particular, was identified as an early acting factor that recruits other ESCRT-III proteins to the nuclear envelope. A fundamental aspect of the varied roles of ESCRT factors is their recruitment by site-specific adaptors, yet the central question of how the ESCRT machinery is targeted to nuclear membranes has remained outstanding. Our study identifies the inner nuclear membrane protein LEM2 as a key, conserved factor that recruits CHMP7 and downstream ESCRT-III proteins to breaches in the nuclear envelope. Endosomal sorting complexes required for transport III (ESCRT-III) proteins have been implicated in sealing the nuclear envelope in mammals, spindle pole body dynamics in fission yeast, and surveillance of defective nuclear pore complexes in budding yeast. Here, we report that Lem2p (LEM2), a member of the LEM (Lap2-Emerin-Man1) family of inner nuclear membrane proteins, and the ESCRT-II/ESCRT-III hybrid protein Cmp7p (CHMP7), work together to recruit additional ESCRT-III proteins to holes in the nuclear membrane. In Schizosaccharomyces pombe, deletion of the ATPase vps4 leads to severe defects in nuclear morphology and integrity. These phenotypes are suppressed by loss-of-function mutations that arise spontaneously in lem2 or cmp7, implying that these proteins may function upstream in the same pathway. Building on these genetic interactions, we explored the role of LEM2 during nuclear envelope reformation in human cells. We found that CHMP7 and LEM2 enrich at the same region of the chromatin disk periphery during this window of cell division and that CHMP7 can bind directly to the C-terminal domain of LEM2 in vitro. We further found that, during nuclear envelope formation, recruitment of the ESCRT factors CHMP7, CHMP2A, and IST1/CHMP8 all depend on LEM2 in human cells. We conclude that Lem2p/LEM2 is a conserved nuclear site-specific adaptor that recruits Cmp7p/CHMP7 and downstream ESCRT factors to the nuclear envelope.


FEBS Letters | 2001

YFH1‐mediated iron homeostasis is independent of mitochondrial respiration

Opal S. Chen; Jerry Kaplan

The human gene frataxin and its yeast homolog YFH1 affect mitochondrial function. Deficits in frataxin result in Friedreich ataxia, while deletion of YFH1 results in respiratory incompetence. We determined that as long as respiratory incompetent yeast express Yfh1p they do not accumulate excessive mitochondrial iron. Deletion of YFH1 in respiratory incompetent yeast results in mitochondrial iron accumulation, while the reintroduction of Yfh1p results in mitochondrial iron export. Further, overexpression of Yfh1p has no effect on oxygen consumption in wild‐type yeast grown in either fermentative or respiratory carbon sources. We conclude that the effect of Yfh1p on mitochondrial iron metabolism is independent of respiratory activity.


bioRxiv | 2016

LEM2 and CHMP7 function in ESCRT-dependent nuclear envelope closure in yeast and human cells

Mingyu Gu; Opal S. Chen; Dollie Lajoie; Mark S. Ladinsky; Michael J. Redd; Linda S. Nikolova; Pamela J. Bjorkman; Katharine S. Ullman; Wesley I. Sundquist; Adam Frost

ESCRT-III proteins have been implicated in sealing the nuclear envelope in mammals, spindle pole body dynamics in fission yeast, and the clearance of defective nuclear pore complexes in budding yeast. Here, we report that Lem2p (LEM2), a member of the LEM (Lap2-Emerin-Man1) family of inner nuclear membrane proteins, and the ESCRT-II/ESCRT-III hybrid protein Cmp7p (CHMP7), collaborate to recruit ESCRT-III proteins to holes in the nuclear membrane. In fission yeast, deletion of the ATPase vps4 leads to severe defects in nuclear morphology and integrity. These phenotypes are suppressed by loss-of-function mutations that arise spontaneously in lem2 or cmp7, implying that all three function in the same pathway. In mammals, ESCRT factors participate in nuclear envelope reformation in anaphase, and we show that this process similarly depends on both LEM2 and CHMP7. Our observations suggest that Lem2p/LEM2 acts as a site-specific adaptor that recruits Cmp7p/CHMP7 and other ESCRT factors to the nuclear envelope.ESCRT-III proteins have been implicated in sealing the nuclear envelope in mammals, spindle pole body dynamics in fission yeast, and surveillance of defective nuclear pore complexes in budding yeast. Here, we report that Lem2p (LEM2), a member of the LEM (Lap2-Emerin-Man1) family of inner nuclear membrane proteins, and the ESCRT-II/ESCRT-III hybrid protein Cmp7p (CHMP7), work together to recruit additional ESCRT-III proteins to holes in the nuclear membrane. In S. pombe, deletion of the ATPase vps4 leads to severe defects in nuclear morphology and integrity. These phenotypes are suppressed by loss-of-function mutations that arise spontaneously in lem2 or cmp7, implying that these proteins may function upstream in the same pathway. Building on these genetic interactions, we explored the role of LEM2 during nuclear envelope reformation in human cells. We found that CHMP7 and LEM2 enrich at the same region of the chromatin disc periphery during this window of cell division, and that CHMP7 can bind directly to the C-terminal domain of LEM2 in vitro. We further found that, during nuclear envelope formation, recruitment of the ESCRT factors CHMP7, CHMP2A and IST1/CHMP8 all depend on LEM2 in human cells. We conclude that Lem2p/LEM2 is a conserved nuclear site-specific adaptor that recruits Cmp7p/CHMP7 and downstream ESCRT factors to the nuclear envelope.


Journal of Biological Chemistry | 2018

Altered sterol metabolism in budding yeast affects mitochondrial iron–sulfur (Fe-S) cluster synthesis

Diane M. Ward; Opal S. Chen; Liangtao Li; Jerry Kaplan; Shah Alam Bhuiyan; Selvamuthu K. Natarajan; Martin Bard; James Cox

Ergosterol synthesis is essential for cellular growth and viability of the budding yeast Saccharomyces cerevisiae, and intracellular sterol distribution and homeostasis are therefore highly regulated in this species. Erg25 is an iron-containing C4-methyl sterol oxidase that contributes to the conversion of 4,4-dimethylzymosterol to zymosterol, a precursor of ergosterol. The ERG29 gene encodes an endoplasmic reticulum (ER)-associated protein, and here we identified a role for Erg29 in the methyl sterol oxidase step of ergosterol synthesis. ERG29 deletion resulted in lethality in respiring cells, but respiration-incompetent (Rho− or Rho0) cells survived, suggesting that Erg29 loss leads to accumulation of oxidized sterol metabolites that affect cell viability. Down-regulation of ERG29 expression in Δerg29 cells indeed led to accumulation of methyl sterol metabolites, resulting in increased mitochondrial oxidants and a decreased ability of mitochondria to synthesize iron–sulfur (Fe-S) clusters due to reduced levels of Yfh1, the mammalian frataxin homolog, which is involved in mitochondrial iron metabolism. Using a high-copy genomic library, we identified suppressor genes that permitted growth of Δerg29 cells on respiratory substrates, and these included genes encoding the mitochondrial proteins Yfh1, Mmt1, Mmt2, and Pet20, which reversed all phenotypes associated with loss of ERG29. Of note, loss of Erg25 also resulted in accumulation of methyl sterol metabolites and also increased mitochondrial oxidants and degradation of Yfh1. We propose that accumulation of toxic intermediates of the methyl sterol oxidase reaction increases mitochondrial oxidants, which affect Yfh1 protein stability. These results indicate an interaction between sterols generated by ER proteins and mitochondrial iron metabolism.


Journal of Biological Chemistry | 2001

CCC1 Is a Transporter That Mediates Vacuolar Iron Storage in Yeast

Liangtao Li; Opal S. Chen; Diane M. Ward; Jerry Kaplan


Journal of Biological Chemistry | 2004

Transcription of the Yeast Iron Regulon Does Not Respond Directly to Iron but Rather to Iron-Sulfur Cluster Biosynthesis

Opal S. Chen; Robert J. Crisp; Martin Valachovic; Martin Bard; Dennis R. Winge; Jerry Kaplan


Journal of Biological Chemistry | 2000

CCC1 Suppresses Mitochondrial Damage in the Yeast Model of Friedreich's Ataxia by Limiting Mitochondrial Iron Accumulation*

Opal S. Chen; Jerry Kaplan

Collaboration


Dive into the Opal S. Chen's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Adam Frost

University of California

View shared research outputs
Top Co-Authors

Avatar

Barry H. Paw

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dollie Lajoie

Huntsman Cancer Institute

View shared research outputs
Top Co-Authors

Avatar

George C. Shaw

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar

Gerhard J. Weber

Howard Hughes Medical Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge