Owen J. Guy
Swansea University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Owen J. Guy.
2D Materials | 2014
Z. Tehrani; Gregory Burwell; M.A. Mohd Azmi; A. Castaing; R. H. Rickman; J Almarashi; P.R. Dunstan; A. A. Miran Beigi; Shareen H. Doak; Owen J. Guy
A generic electrochemical method of ?bioreceptor? antibody attachment to phenyl amine functionalized graphitic surfaces is demonstrated. Micro-channels of chemically modified multi-layer epitaxial graphene (MLEG) have been used to provide a repeatable and reliable response to nano-molar (nM) concentrations of the cancer risk (oxidative stress) biomarker 8-hydroxydeoxyguanosine (8-OHdG). X-ray photoelectron spectroscopy, Raman spectroscopy are used to characterize the functionalized MLEG. Confocal fluorescence microscopy using fluorescent-labelled antibodies indicates that the anti-8-OHdG antibody selectively binds to the phenyl amine-functionalized MLEG?s channel. Current?voltage measurements on functionalized channels showed repeatable current responses from antibody?biomarker binding events. This technique is scalable, reliable, and capable of providing a rapid, quantitative, label-free assessment of biomarkers at nano-molar (<20 nM) concentrations in analyte solutions. The sensitivity of the sensor device was investigated using varying concentrations of 8-OHdG, with changes in the sensor?s channel resistance observed upon exposure to 8-OHdG. Detection of 8-OHdG concentrations as low as 0.1 ng ml?1 (0.35 nM) has been demonstrated. This is five times more sensitive than reported enzyme linked immunosorbent assay tests (0.5 ng ml?1).
Biosensors and Bioelectronics | 2014
M.A. Mohd Azmi; Z. Tehrani; R.P. Lewis; Kelly-Ann D. Walker; D.R. Jones; D.R. Daniels; Shareen H. Doak; Owen J. Guy
In this article we present ultra-sensitive, silicon nanowire (SiNW)-based biosensor devices for the detection of disease biomarkers. An electrochemically induced functionalisation method has been employed to graft antibodies targeted against the prostate cancer risk biomarker 8-hydroxydeoxyguanosine (8-OHdG) to SiNW surfaces. The antibody-functionalised SiNW sensor has been used to detect binding of the 8-OHdG biomarker to the SiNW surface within seconds of exposure. Detection of 8-OHdG concentrations as low as 1 ng/ml (3.5 nM) has been demonstrated. The active device has been bonded to a disposable printed circuit which can be inserted into an electronic readout system as part of an integrated Point of Care (POC) diagnostic. The speed, sensitivity and ease of detection of biomarkers using SiNW sensors render them ideal for eventual POC diagnostics.
Journal of Materials Chemistry B | 2014
Sofia Teixeira; Robert Steven Conlan; Owen J. Guy; M. Goreti F. Sales
Human chorionic gonadotropin (hCG) is a key diagnostic marker of pregnancy and an important biomarker for cancers in the prostate, ovaries and bladder and therefore of great importance in diagnosis. For this purpose, a new immunosensor of screen-printed electrodes (SPEs) is presented here. The device was fabricated by introducing a polyaniline (PANI) conductive layer, via in situ electropolymerization of aniline, onto a screen-printed graphene support. The PANI-coated graphene acts as the working electrode of a three terminal electrochemical sensor. The working electrode is functionalised with anti-hCG, by means of a simple process that enabled oriented antibody binding to the PANI layer. The antibody was attached to PANI following activation of the -COOH group at the Fc terminal. Functionalisation of the electrode was analysed and optimized using Electrochemical Impedance Spectroscopy (EIS). Chemical modification of the surface was characterised using Fourier transform infrared, and Raman spectroscopy with confocal microscopy. The graphene-SPE-PANI devices displayed linear responses to hCG in EIS assays from 0.001 to 50 ng mL-1 in real urine, with a detection limit of 0.286 pg mL-1. High selectivity was observed with respect to the presence of the constituent components of urine (urea, creatinine, magnesium chloride, calcium chloride, sodium dihydrogen phosphate, ammonium chloride, potassium sulphate and sodium chloride) at their normal levels, with a negligible sensor response to these chemicals. Successful detection of hCG was also achieved in spiked samples of real urine from a pregnant woman. The immunosensor developed is a promising tool for point-of-care detection of hCG, due to its excellent detection capability, simplicity of fabrication, low-cost, high sensitivity and selectivity.
Applied Physics Letters | 2009
Amador Pérez-Tomás; Michal Lodzinski; Owen J. Guy; M. R. Jennings; M. Placidi; J. Llobet; P. M. Gammon; M. C. Davis; James A. Covington; S. E. Burrows; Philip A. Mawby
This paper describes the thermal oxidation of Si/SiC heterojunction structures, produced using a layer-transfer process, as an alternative solution to fabricating SiC metal-oxide-semiconductor (MOS) devices with lower interface state densities (Dit). Physical characterization demonstrate that the transferred Si layer is relatively smooth, uniform, and essentially monocrystalline. The Si on SiC has been totally or partially thermally oxidized at 900–1150 °C. Dit for both partially and completely oxidized silicon layers on SiC were significantly lower than Dit values for MOS capacitors fabricated via conventional thermal oxidation of SiC. The quality of the SiO2, formed by oxidation of a wafer-bonded silicon layer reported here has the potential to realize a number of innovative heterojunction concepts and devices, including the fabrication of high quality and reliable SiO2 gate oxides.
Electrochemical and Solid State Letters | 2008
M. R. Jennings; Amador Pérez-Tomás; Owen J. Guy; Richard Hammond; S. E. Burrows; P. M. Gammon; Michal Lodzinski; James A. Covington; Philip A. Mawby
The physical and electrical properties of Si/SiC heterojunctions formed by direct wafer bonding are presented. Atomic force microscopy (AFM) and imaging reveal an improved bonding quality when Si wafers are transferred to on-axis substrates as opposed to off-axis epitaxial layers. AFM analysis of the bonded wafer achieves a smoother surface when compared to molecular beam epitaxy-grown Si layers. A reduced roughness of only 5.8 nm was measured for bonded wafers. Current-voltage measurements were used to extract the rectifying characteristics of Si/SiC heterojunctions. These Si layers could lead to improved high quality and reliable SiO2 gate oxides
international power electronics and motion control conference | 2008
Owen J. Guy; Michal Lodzinski; A. Castaing; P. Igic; Amador Pérez-Tomás; Michael R. Jennings; Philip A. Mawby
Silicon carbide has long been hailed as the successor to silicon in many power electronics applications. Its superior electrical and thermal properties have delivered devices that operate at higher voltages, higher temperatures and with lower on-resistances than silicon devices. However, SiC Schottky diodes are still the only devices commercially available today. Though SiC Schottkys are now being used with silicon IGBTs in dasiahybridpsila inverter modules, the real advantages will be seen when silicon switching devices can be replaced by SiC. This paper describes the current state of SiC diode and MOSFET technology, discussing possible solutions to making these devices commercially viable.
Materials Science Forum | 2007
Owen J. Guy; T.E. Jenkins; Michal Lodzinski; A. Castaing; S.P. Wilks; P. Bailey; T.C.Q. Noakes
The high density of interface states of thermally grown oxides on silicon carbide has prompted research into alternative oxidation methods and post oxidation anneals. One such alternative is oxidation of a deposited sacrificial silicon layer. A recent variation of this technique is a partial oxidation of the deposited Si layer, so that a thin Si layer remains between the SiO2 and SiC layers. If the SiO2/Si interface has lower interface state densities than the SiO2/SiC interface, the SiO2/Si/SiC hetero-structure could yield improved channel mobilities in MOS devices. Moreover, by correct optimization of the MOSFET device structure, breakdown can be designed to occur in the bulk SiC layer, thus maintaining a high blocking voltage. Post oxidation annealing in N2O is another technique often used to reduce interface state densities. However, little is known about the chemical and physical nature of these N2O oxidized dielectrics. Ellipsometric and Medium Energy Ion Scattering (MEIS) investigations of conventional SiO2/SiC interfaces compared with SiO2/Si/SiC hetero-junction structures and N2O oxidized samples are reported.
Procedia Engineering | 2011
Yufei Liu; A. Servant; Owen J. Guy; Khuloud T. Al-Jamal; P.R. Williams; Karl Hawkins; Kostas Kostarelos
Abstract A novel MEMS based drug delivery device has been developed, consisting of an array of metallic contacts. The meander structured device created a uniform electric field which stimulates drug releases. An electro-active hydrogel based polymer matrix responds to an electrical stimulus and shrinks or de-swells on application of an electric field from the fabricated device. Different drug candidates can be encapsulated within the polymer matrix. The de-swelling of the polymer enables the encapsulated drug to be released from the matrix. The gel is able to recover its original size once electric stimulation has been stopped. By controlling the voltage and time, the drug release rate and dose can be precisely controlled. Controlled drug delivery devices may be integrated with sensor technology in combined diagnostic / therapeutic point of care devices.
Diagnostics | 2017
Rhiannan Forsyth; Anitha Devadoss; Owen J. Guy
Since the discovery of the two-dimensional (2D) carbon material, graphene, just over a decade ago, the development of graphene-based field effect transistors (G-FETs) has become a widely researched area, particularly for use in point-of-care biomedical applications. G-FETs are particularly attractive as next generation bioelectronics due to their mass-scalability and low cost of the technology’s manufacture. Furthermore, G-FETs offer the potential to complete label-free, rapid, and highly sensitive analysis coupled with a high sample throughput. These properties, coupled with the potential for integration into portable instrumentation, contribute to G-FETs’ suitability for point-of-care diagnostics. This review focuses on elucidating the recent developments in the field of G-FET sensors that act on a bioaffinity basis, whereby a binding event between a bioreceptor and the target analyte is transduced into an electrical signal at the G-FET surface. Recognizing and quantifying these target analytes accurately and reliably is essential in diagnosing many diseases, therefore it is vital to design the G-FET with care. Taking into account some limitations of the sensor platform, such as Debye–Hükel screening and device surface area, is fundamental in developing improved bioelectronics for applications in the clinical setting. This review highlights some efforts undertaken in facing these limitations in order to bring G-FET development for biomedical applications forward.
Applied Physics Letters | 2010
P. M. Gammon; Amador Pérez-Tomás; M. R. Jennings; Owen J. Guy; N. Rimmer; J. Llobet; Narcis Mestres; Ph. Godignon; M. Placidi; M. Zabala; James A. Covington; Philip A. Mawby
In this paper we present a method for integrating HfO2 into the SiC gate architecture, through the use of a thin wafer bonded Si heterojunction layer. Capacitors consisting of HfO2 on Si, SiC, Si/SiC, and SiO2/SiC have been fabricated and electrically tested. The HfO2/Si/SiC capacitors minimize leakage, with a breakdown electric field of 3.5 MV/cm through the introduction of a narrow band gap semiconductor between the two wide band gap materials. The Si/SiC heterojunction was analyzed using transmission electron microscopy, energy dispersive x-ray, and Raman analysis, proving that the interface is free of contaminants and that the Si layer remains unstressed.