Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Paola Sette is active.

Publication


Featured researches published by Paola Sette.


Journal of Virology | 2007

Intracellular Trafficking and Maturation of Herpes Simplex Virus Type 1 gB and Virus Egress Require Functional Biogenesis of Multivesicular Bodies

Arianna Calistri; Paola Sette; Cristiano Salata; Enrico Cancellotti; Cristina Forghieri; Alessandra Comin; Heinrich G. Göttlinger; Gabriella Campadelli-Fiume; Giorgio Palù; Cristina Parolin

ABSTRACT The biogenesis of multivesicular bodies (MVBs) is topologically equivalent to virion budding. Hence, a number of viruses exploit the MVB pathway to build their envelope and exit from the cell. By expression of dominant negative forms of Vps4 and Vps24, two components of the MVB pathway, we observed an impairment in infectious herpes simplex virus (HSV) assembly/egress, in agreement with a recent report showing the involvement in HSV envelopment of Vps4, the MVB-specific ATPase (C. M. Crump, C. Yates, and T. Minson, J. Virol. 81:7380-7387). Furthermore, HSV infection resulted in morphological changes to MVBs. Glycoprotein B (gB), one of the most highly conserved glycoproteins across the Herpesviridae family, was sorted to MVB membranes. In cells expressing the dominant negative form of Vps4, the site of intracellular gB accumulation was altered; part of gB accumulated as an endoglycosidase H-sensitive immature form at a calreticulin-positive compartment, indicating that gB traffic was dependent on a functional MVB pathway. gB was ubiquitinated in both infected and transfected cells. Ubiquitination was in part dependent on ubiquitin lysine 63, a signal for cargo sorting to MVBs. Partial deletion of the gB cytoplasmic tail resulted in a dramatic reduction of ubiquitination, as well as of progeny virus assembly and release to the extracellular compartment. Thus, HSV envelopment/egress and gB intracellular trafficking are dependent on functional MVB biogenesis. Our data support the view that the sorting of gB to MVB membranes may represent a critical step in HSV envelopment and egress and that modified MVB membranes constitute a platform for HSV cytoplasmic envelopment or that MVB components are recruited to the site(s) of envelopment.


Journal of Virology | 2010

The ESCRT-Associated Protein Alix Recruits the Ubiquitin Ligase Nedd4-1 To Facilitate HIV-1 Release through the LYPXnL L Domain Motif

Paola Sette; Joshua A. Jadwin; Vincent Dussupt; Nana F. Bello; Fadila Bouamr

ABSTRACT The p6 region of HIV-1 Gag contains two late (L) domains, PTAP and LYPXnL, that bind Tsg101 and Alix, respectively. Interactions with these two cellular proteins recruit members of the hosts fission machinery (ESCRT) to facilitate HIV-1 release. Other retroviruses gain access to the host ESCRT components by utilizing a PPXY-type L domain that interacts with cellular Nedd4-like ubiquitin ligases. Despite the absence of a PPXY motif in HIV-1 Gag, interaction with the ubiquitin ligase Nedd4-2 was recently shown to stimulate HIV-1 release. We show here that another Nedd4-like ubiquitin ligase, Nedd4-1, corrected release defects resulting from the disruption of PTAP (PTAP−), suggesting that HIV-1 Gag also recruits Nedd4-1 to facilitate virus release. Notably, Nedd4-1 remediation of HIV-1 PTAP− budding defects is independent of cellular Tsg101, implying that Nedd4-1s function in HIV-1 release does not involve ESCRT-I components and is therefore distinct from that of Nedd4-2. Consistent with this finding, deletion of the p6 region decreased Nedd4-1-Gag interaction, and disruption of the LYPXnL motif eliminated Nedd4-1-mediated restoration of HIV-1 PTAP−. This result indicated that both Nedd4-1 interaction with Gag and function in virus release occur through the Alix-binding LYPXnL motif. Mutations of basic residues located in the NC domain of Gag that are critical for Alixs facilitation of HIV-1 release, also disrupted release mediated by Nedd4-1, further confirming a Nedd4-1-Alix functional interdependence. In fact we found that Nedd4-1 binds Alix in both immunoprecipitation and yeast-two-hybrid assays. In addition, Nedd4-1 requires its catalytic activity to promote virus release. Remarkably, RNAi knockdown of cellular Nedd4-1 eliminated Alix ubiquitination in the cell and impeded its ability to function in HIV-1 release. Together our data support a model in which Alix recruits Nedd4-1 to facilitate HIV-1 release mediated through the LYPXnL/Alix budding pathway via a mechanism that involves Alix ubiquitination.


Journal of Virology | 2011

Basic Residues in the Nucleocapsid Domain of Gag Are Critical for Late Events of HIV-1 Budding

Vincent Dussupt; Paola Sette; Nana F. Bello; Melodi P. Javid; Kunio Nagashima; Fadila Bouamr

ABSTRACT The p6 region of HIV-1 Gag contains two late (L) domains, PTAP and LYPXnL, that bind the cellular proteins Tsg101 and Alix, respectively. These interactions are thought to recruit members of the host fission machinery (ESCRT) to facilitate HIV-1 release. Here we report a new role for the p6-adjacent nucleocapsid (NC) domain in HIV-1 release. The mutation of basic residues in NC caused a pronounced decrease in virus release from 293T cells, although NC mutant Gag proteins retained the ability to interact with cellular membranes and RNAs. Remarkably, electron microscopy analyses of these mutants revealed arrested budding particles at the plasma membrane, analogous to those seen following the disruption of the PTAP motif. This result indicated that the basic residues in NC are important for virus budding. When analyzed in physiologically more relevant T-cell lines (Jurkat and CEM), NC mutant viruses remained tethered to the plasma membrane or to each other by a membranous stalk, suggesting membrane fission impairment. Remarkably, NC mutant release defects were alleviated by the coexpression of a Gag protein carrying a wild-type (WT) NC domain but devoid of all L domain motifs and by providing alternative access to the ESCRT pathway, through the in trans expression of the ubiquitin ligase Nedd4.2s. Since NC mutant Gag proteins retained the interaction with Tsg101, we concluded that NC mutant budding arrests might have resulted from the inability of Gag to recruit or utilize members of the host ESCRT machinery that act downstream of Tsg101. Together, these data support a model in which NC plays a critical role in HIV-1 budding.


Journal of Virology | 2010

Late Domain-Independent Rescue of a Release-Deficient Moloney Murine Leukemia Virus by the Ubiquitin Ligase Itch

Joshua A. Jadwin; Victoria Rudd; Paola Sette; Swathi Challa; Fadila Bouamr

ABSTRACT Moloney murine leukemia virus (MoMLV) Gag utilizes its late (L) domain motif PPPY to bind members of the Nedd4-like ubiquitin ligase family. These interactions recruit components of the cells budding machinery that are critical for virus release. MoMLV Gag contains two additional L domains, PSAP and LYPAL, that are believed to drive residual MoMLV release via interactions with cellular proteins Tsg101 and Alix, respectively. We found that overexpression of Tsg101 or Alix failed to rescue the release of PPPY-deficient MoMLV via these other L domains. However, low-level expression of the ubiquitin ligase Itch potently rescued the release and infectivity of MoMLV lacking PPPY function. In contrast, other ubiquitin ligases such as WWP1, Nedd4.1, Nedd4.2, and Nedd4.2s did not rescue this release-deficient virus. Efficient rescue required the ubiquitin ligase activity of Itch and an intact C2 domain but not presence of the endophilin-binding site. Additionally, we found Itch to immunoprecipitate with MoMLV Gag lacking the PPPY motif and to be incorporated into rescued MoMLV particles. The PSAP and LYPAL motifs were dispensable for Itch-mediated virus rescue, and their absence did not affect the incorporation of Itch into the rescued particles. Itch-mediated rescue of release-defective MoMLV was sensitive to inhibition by dominant-negative versions of ESCRT-III components and the VPS4 AAA ATPase, indicating that Itch-mediated correction of MoMLV release defects requires the integrity of the host vacuolar sorting protein pathway. RNA interference knockdown of Itch suppressed the residual release of the MoMLV lacking the PPPY motif. Interestingly, Itch stimulation of the PPPY-deficient MoMLV release was accompanied by the enhancement of Gag ubiquitination and the appearance of new ubiquitinated Gag proteins in virions. Together, these results suggest that Itch can facilitate MoMLV release in an L domain-independent manner via a mechanism that requires the host budding machinery and involves Gag ubiquitination.


Structure | 2011

The Phe105 loop of Alix Bro1 domain plays a key role in HIV-1 release

Paola Sette; Ruiling Mu; Vincent Dussupt; Jiansheng Jiang; Greg A. Snyder; Patrick Smith; Tsan Sam Xiao; Fadila Bouamr

Alix and cellular paralogs HD-PTP and Brox contain N-terminal Bro1 domains that bind ESCRT-III CHMP4. In contrast to HD-PTP and Brox, expression of the Bro1 domain of Alix alleviates HIV-1 release defects that result from interrupted access to ESCRT. In an attempt to elucidate this functional discrepancy, we solved the crystal structures of the Bro1 domains of HD-PTP and Brox. They revealed typical boomerang folds they share with the Bro1 Alix domain. However, they each contain unique structural features that may be relevant to their specific function(s). In particular, phenylalanine residue in position 105 (Phe105) of Alix belongs to a long loop that is unique to its Bro1 domain. Concurrently, mutation of Phe105 and surrounding residues at the tip of the loop compromise the function of Alix in HIV-1 budding without affecting its interactions with Gag or CHMP4. These studies identify a new functional determinant in the Bro1 domain of Alix.


Journal of Virology | 2012

Identification of the HIV-1 NC Binding Interface in Alix Bro1 Reveals a Role for RNA

Paola Sette; Vincent Dussupt; Fadila Bouamr

ABSTRACT HIV-1 recruits members of ESCRT, the cell membrane fission machinery that promotes virus exit. HIV-1 Gag protein gains access to ESCRT directly by binding Alix, an ESCRT-associated protein that promotes budding. The Alix Bro1 and V domains bind Gag NC and p6 regions, respectively. Whereas V-p6 binding and function are well characterized, residues in Bro1 that interact with NC and their functional contribution to Alix-mediated HIV-1 budding are unknown. We mapped Bro1 residues that constitute the NC binding interface and found that they are critical for function. Intriguingly, residues involved in interactions on both sides of the Bro1-NC interface are positively charged, suggesting the involvement of a negatively charged cellular factor serving as a bridge. Nuclease treatment eliminated Bro1-NC interactions, revealing the involvement of RNA. These findings establish a direct role for NC in mediating interactions with ESCRT necessary for virus release and report the first evidence of RNA involvement in such recruitments.


Journal of Virology | 2012

Budding of Retroviruses Utilizing Divergent L domains Requires Nucleocapsid

Nana F. Bello; Vincent Dussupt; Paola Sette; Victoria Rudd; Kunio Nagashima; Frederic Bibollet-Ruche; Chaoping Chen; Ronald C. Montelaro; Beatrice H. Hahn; Fadila Bouamr

ABSTRACT We recently reported that human immunodeficiency virus type 1 (HIV-1) carrying PTAP and LYPXnL L domains ceased budding when the nucleocapsid (NC) domain was mutated, suggesting a role for NC in HIV-1 release. Here we investigated whether NC involvement in virus release is a property specific to HIV-1 or a general requirement of retroviruses. Specifically, we examined a possible role for NC in the budding of retroviruses relying on divergent L domains and structurally homologous NC domains that harbor diverse protein sequences. We found that NC is critical for the release of viruses utilizing the PTAP motif whether it functions within its native Gag in simian immunodeficiency virus cpzGAB2 (SIVcpzGAB2) or SIVsmmE543 or when it is transplanted into the heterologous Gag protein of equine infectious anemia virus (EIAV). In both cases, virus release was severely diminished even though NC mutant Gag proteins retained the ability to assemble spherical particles. Moreover, budding-defective NC mutants, which displayed particles tethered to the plasma membrane, were triggered to release virus when access to the cell endocytic sorting complex required for transport pathway was restored (i.e., in trans expression of Nedd4.2s). We also examined the role of NC in the budding of EIAV, a retrovirus relying exclusively on the (L)YPXnL-type L domain. We found that EIAV late budding defects were rescued by overexpression of the isolated Alix Bro1 domain (Bro1). Bro1-mediated rescue of EIAV release required the wild-type NC. EIAV NC mutants lost interactions with Bro1 and failed to produce viruses despite retaining the ability to self-assemble. Together, our studies establish a role for NC in the budding of retroviruses harboring divergent L domains and evolutionarily diverse NC sequences, suggesting the utilization of a common conserved mechanism and/or cellular factor rather than a specific motif.


Journal of Virology | 2016

TRIM5α-Mediated Ubiquitin Chain Conjugation Is Required for Inhibition of HIV-1 Reverse Transcription and Capsid Destabilization

Edward M. Campbell; Jared Weingart; Paola Sette; Silvana Opp; Jaya Sastri; Sarah K. O'Connor; Sarah Talley; Felipe Diaz-Griffero; Vanessa M. Hirsch; Fadila Bouamr

ABSTRACT Rhesus macaque TRIM5α (rhTRIM5α) is a retroviral restriction factor that inhibits HIV-1 infection. Previous studies have revealed that TRIM5α restriction occurs via a two-step process. The first step is restriction factor binding, which is sufficient to inhibit infection. The second step, which is sensitive to proteasome inhibition, prevents the accumulation of reverse transcription products in the target cell. However, because of the pleotropic effects of proteasome inhibitors, the molecular mechanisms underlying the individual steps in the restriction process have remained poorly understood. In this study, we have fused the small catalytic domain of herpes simplex virus UL36 deubiquitinase (DUb) to the N-terminal RING domain of rhTRIM5α, which results in a ubiquitination-resistant protein. Cell lines stably expressing this fusion protein inhibited HIV-1 infection to the same degree as a control fusion to a catalytically inactive DUb. However, reverse transcription products were substantially increased in the DUb-TRIM5α fusion relative to the catalytically inactive control or the wild-type (WT) TRIM5α. Similarly, expression of DUb-rhTRIM5α resulted in the accumulation of viral cores in target cells following infection, while the catalytically inactive control and WT rhTRIM5α induced the abortive disassembly of viral cores, indicating a role for ubiquitin conjugation in rhTRIM5α-mediated destabilization of HIV-1 cores. Finally, DUb-rhTRIM5α failed to activate NF-κB signaling pathways compared to controls, demonstrating that this ubiquitination-dependent activity is separable from the ability to restrict retroviral infection. IMPORTANCE These studies provide direct evidence that ubiquitin conjugation to rhTRIM5α-containing complexes is required for the second step of HIV-1 restriction. They also provide a novel tool by which the biological activities of TRIM family proteins might be dissected to better understand their function and underlying mechanisms of action.


Structure | 2012

Two Distinct Binding Modes Define The Interaction of Brox with The C-Terminal Tails of CHMP5 and CHMP4B

Ruiling Mu; Vincent Dussupt; Jiansheng Jiang; Paola Sette; Victoria Rudd; Watchalee Chuenchor; Nana F. Bello; Fadila Bouamr; Tsan Sam Xiao

Interactions of the CHMP protein carboxyl terminal tails with effector proteins play important roles in retroviral budding, cytokinesis, and multivesicular body biogenesis. Here we demonstrate that hydrophobic residues at the CHMP4B C-terminal amphipathic α helix bind a concave surface of Brox,xa0a mammalian paralog of Alix. Unexpectedly, CHMP5 was also found to bind Brox and specifically recruit endogenous Brox to detergent-resistant membrane fractions through its C-terminal 20 residues. Instead of an α helix, the CHMP5 C-terminal tail adopts a tandem β-hairpin structure that binds Brox at the same site as CHMP4B. Additional Brox:CHMP5 interface is furnished by a unique CHMP5 hydrophobic pocket engaging the Brox residue Y348 that is not conserved among the Bro1 domains. Our studies thus unveil a β-hairpin conformation of the CHMP5 protein C-terminal tail, and provide insights into the overlapping but distinct binding profiles of ESCRT-III and the Bro1 domain proteins.


Cell Host & Microbe | 2016

HIV-1 Nucleocapsid Mimics the Membrane Adaptor Syntenin PDZ to Gain Access to ESCRTs and Promote Virus Budding

Paola Sette; Sarah K. O’Connor; V. Siddartha Yerramilli; Vincent Dussupt; Kunio Nagashima; Kasana Chutiraka; Jaisri R. Lingappa; Suzanne Scarlata; Fadila Bouamr

HIV-1 recruits cellular endosomal sorting complexes required for transport (ESCRTs) to bud virions from the membrane. Disruption of the viral nucleocapsid (NC) domain integrity affects HIV-1 budding. However, the molecular mechanisms of NCs involvement in HIV budding remain unclear. We find that NC mimics the PDZ domains of syntenin, a membrane-binding adaptor involved in cell-to-cell contact/communication, to capture the Bro1 domain of ALIX, which is an ESCRTs recruiting cellular adaptor. NC binds membranes via basic residues in either the distal or proximal zinc fingers, and NC-membrane binding is essential for Bro1 capture and HIV-1 budding. Removal of RNA enhances NC membrane binding, suggesting a dynamic competition between membrane lipids and RNA for the same binding sites in NC. Remarkably, syntenin PDZ can substitute for NC function in HIV-1 budding. Thus, NC mimics syntenin PDZs to function as a membrane-binding adaptor critical for HIV-1 budding at specific microdomains of the membrane.

Collaboration


Dive into the Paola Sette's collaboration.

Top Co-Authors

Avatar

Fadila Bouamr

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Vincent Dussupt

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Nana F. Bello

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kunio Nagashima

Science Applications International Corporation

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Cuiling Xu

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ivona Pandrea

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar

Ruy M. Ribeiro

Los Alamos National Laboratory

View shared research outputs
Researchain Logo
Decentralizing Knowledge