Paolo Michele Ruti
ENEA
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Paolo Michele Ruti.
Bulletin of the American Meteorological Society | 2013
Silvio Gualdi; Samuel Somot; Laurent Li; Vincenzo Artale; Mario Adani; Alessio Bellucci; Alain Braun; Sandro Calmanti; Adriana Carillo; A. Dell'Aquila; Michel Déqué; Clotilde Dubois; Alberto Elizalde; Ali Harzallah; Daniela Jacob; B. L'Hévéder; Wilhelm May; Paolo Oddo; Paolo Michele Ruti; Antonella Sanna; Gianmaria Sannino; Enrico Scoccimarro; Florence Sevault; Antonio Navarra
In this article, the authors describe an innovative multimodel system developed within the Climate Change and Impact Research: The Mediterranean Environment (CIRCE) European Union (EU) Sixth Framework Programme (FP6) project and used to produce simulations of the Mediterranean Sea regional climate. The models include high-resolution Mediterranean Sea components, which allow assessment of the role of the basin and in particular of the air–sea feedbacks in the climate of the region. The models have been integrated from 1951 to 2050, using observed radiative forcings during the first half of the simulation period and the Intergovernmental Panel on Climate Change (IPCC) Special Report on Emissions Scenarios (SRES) A1B scenario during the second half. The projections show a substantial warming (about 1.5°–2°C) and a significant decrease of precipitation (about 5%) in the region for the scenario period. However, locally the changes might be even larger. In the same period, the projected surface net heat loss de...
Bulletin of the American Meteorological Society | 2016
Paolo Michele Ruti; Samuel Somot; Filippo Giorgi; Clotilde Dubois; Emmanouil Flaounas; Anika Obermann; A. Dell’aquila; G. Pisacane; Ali Harzallah; E. Lombardi; Bodo Ahrens; Naveed Akhtar; Antoinette Alias; Thomas Arsouze; R. Aznar; Sophie Bastin; Judit Bartholy; Karine Béranger; Jonathan Beuvier; Sophie Bouffies-Cloché; J. Brauch; William Cabos; Sandro Calmanti; Jean-Christophe Calvet; Adriana Carillo; Dario Conte; Erika Coppola; V. Djurdjevic; Philippe Drobinski; A. Elizalde-Arellano
The Mediterranean is expected to be one of the most prominent and vulnerable climate change “hot spots” of the 21st century, and the physical mechanisms underlying this finding are still not clear. Furthermore complex interactions and feedbacks involving ocean-atmosphere-land-biogeochemical processes play a prominent role in modulating the climate and environment of the Mediterranean region on a range of spatial and temporal scales. Therefore it is critical to provide robust climate change information for use in Vulnerability/Impact/Adaptation assessment studies considering the Mediterranean as a fully coupled environmental system. The Med-CORDEX initiative aims at coordinating the Mediterranean climate modeling community towards the development of fully coupled regional climate simulations, improving all relevant components of the system, from atmosphere and ocean dynamics to land surface, hydrology and biogeochemical processes. The primary goals of Med-CORDEX are to improve understanding of past climate variability and trends, and to provide more accurate and reliable future projections, assessing in a quantitative and robust way the added value of using high resolution and coupled regional climate models. The coordination activities and the scientific outcomes of Med-CORDEX can produce an important framework to foster the development of regional earth system models in several key regions worldwide.
Archive | 2013
Silvio Gualdi; Samuel Somot; Wilhelm May; Sergio Castellari; Michel Déqué; Mario Adani; Vincenzo Artale; Alessio Bellucci; Joseph S. Breitgand; Adriana Carillo; Richard C. Cornes; Alessandro Dell’Aquila; Clotilde Dubois; Dimitrios Efthymiadis; Alberto Elizalde; Luis Gimeno; C. M. Goodess; Ali Harzallah; Simon O. Krichak; Franz G. Kuglitsch; Gregor C. Leckebusch; Blandine L’heveder; Laurent Li; Piero Lionello; Jürg Luterbacher; Annarita Mariotti; Antonio Navarra; Raquel Nieto; Katrin M. Nissen; Paolo Oddo
In this chapter we show results from an innovative multi-model system used to produce climate simulations with a realistic representation of the Mediterranean Sea. The models (hereafter simply referred to as the “CIRCE models”) are a set of five coupled climate models composed by a high-resolution Mediterranean Sea coupled with a relatively high-resolution atmospheric component and a global ocean, which allow, for the first time, to explore and assess the role of the Mediterranean Sea and its complex, small-scale dynamics in the climate of the region. In particular, they make it possible to investigate the influence that local air-sea feedbacks might exert on the mechanisms responsible for climate variability and change in the European continent, Middle East and Northern Africa. In many regards, they represent a new and innovative approach to the problem of regionalization of climate projections in the Mediterranean region.
Bulletin of the American Meteorological Society | 2010
Frédéric Hourdin; Ionela Musat; Françoi se Guichard; Paolo Michele Ruti; Florence Favot; Marie-Angèle Filiberti; Maï Pham; Jean-Yves Grandpeix; Jan Polcher; Pascal Marquet; Aaron Boone; Jean-Philippe Lafore; Jean-Luc Redelsperger; Alessandro Dell'Aquila; Teresa Losada Doval; Abdoul Khadre Traore; Hubert Gallée
The African Monsoon Multidisciplinary Analyses-Model Intercomparison Project (AMMA-MIP) was developed within the framework of the AMMA project. It is a relatively light intercomparison and evaluation exercise of both global and regional atmospheric models, focused on the study of the seasonal and intraseasonal variations of the climate and rainfall over the Sahel. Taking advantage of the relative zonal symmetry of the West African climate, one major target of the exercise is the documentation of a meridional cross section made of zonally averaged (10°W–10°E) outputs. This paper presents the motivations and design of the exercise, and it discusses preliminary results and further extensions of the project.
Nature Communications | 2014
Robert Vautard; Françoise Thais; Isabelle Tobin; François-Marie Bréon; Jean-Guy Devezeaux de Lavergne; Augustin Colette; Pascal Yiou; Paolo Michele Ruti
The rapid development of wind energy has raised concerns about environmental impacts. Temperature changes are found in the vicinity of wind farms and previous simulations have suggested that large-scale wind farms could alter regional climate. However, assessments of the effects of realistic wind power development scenarios at the scale of a continent are missing. Here we simulate the impacts of current and near-future wind energy production according to European Union energy and climate policies. We use a regional climate model describing the interactions between turbines and the atmosphere, and find limited impacts. A statistically significant signal is only found in winter, with changes within ±0.3 °C and within 0-5% for precipitation. It results from the combination of local wind farm effects and changes due to a weak, but robust, anticyclonic-induced circulation over Europe. However, the impacts remain much weaker than the natural climate interannual variability and changes expected from greenhouse gas emissions.
Journal of Climate | 2011
Elsa Mohino; Belén Rodríguez-Fonseca; Carlos R. Mechoso; S. Gervois; Paolo Michele Ruti; Fabrice Chauvin
AbstractThe current consensus is that drought has developed in the Sahel during the second half of the twentieth century as a result of remote effects of oceanic anomalies amplified by local land–atmosphere interactions. This paper focuses on the impacts of oceanic anomalies upon West African climate and specifically aims to identify those from SST anomalies in the Pacific/Indian Oceans during spring and summer seasons, when they were significant. Idealized sensitivity experiments are performed with four atmospheric general circulation models (AGCMs). The prescribed SST patterns used in the AGCMs are based on the leading mode of covariability between SST anomalies over the Pacific/Indian Oceans and summer rainfall over West Africa. The results show that such oceanic anomalies in the Pacific/Indian Ocean lead to a northward shift of an anomalous dry belt from the Gulf of Guinea to the Sahel as the season advances. In the Sahel, the magnitude of rainfall anomalies is comparable to that obtained by other aut...
Proceedings of the National Academy of Sciences of the United States of America | 2014
Luigi Ponti; A. P. Gutierrez; Paolo Michele Ruti; A. Dell'Aquila
Significance Inability to determine reliably the direction and magnitude of change in natural and agro-ecosystems due to climate change poses considerable challenge to their management. Olive is an ancient ubiquitous crop having considerable ecological and socioeconomic importance in the Mediterranean Basin. We assess the ecological and economic impact of projected 1.8 °C climate warming on olive and its obligate pest, the olive fly. This level of climate warming will have varying impact on olive yield and fly infestation levels across the Mediterranean Basin, and result in economic winners and losers. The analysis predicts areas of decreased profitability that will increase the risk of abandonment of small farms in marginal areas critical to soil and biodiversity conservation and to fire risk reduction. The Mediterranean Basin is a climate and biodiversity hot spot, and climate change threatens agro-ecosystems such as olive, an ancient drought-tolerant crop of considerable ecological and socioeconomic importance. Climate change will impact the interactions of olive and the obligate olive fruit fly (Bactrocera oleae), and alter the economics of olive culture across the Basin. We estimate the effects of climate change on the dynamics and interaction of olive and the fly using physiologically based demographic models in a geographic information system context as driven by daily climate change scenario weather. A regional climate model that includes fine-scale representation of the effects of topography and the influence of the Mediterranean Sea on regional climate was used to scale the global climate data. The system model for olive/olive fly was used as the production function in our economic analysis, replacing the commonly used production-damage control function. Climate warming will affect olive yield and fly infestation levels across the Basin, resulting in economic winners and losers at the local and regional scales. At the local scale, profitability of small olive farms in many marginal areas of Europe and elsewhere in the Basin will decrease, leading to increased abandonment. These marginal farms are critical to conserving soil, maintaining biodiversity, and reducing fire risk in these areas. Our fine-scale bioeconomic approach provides a realistic prototype for assessing climate change impacts in other Mediterranean agro-ecosystems facing extant and new invasive pests.
Scientific Reports | 2015
Andrea Alessandri; Matteo De Felice; Ning Zeng; Annarita Mariotti; Yutong Pan; Annalisa Cherchi; June-Yi Lee; Bin Wang; Kyung-Ja Ha; Paolo Michele Ruti; Vincenzo Artale
The warm-temperate regions of the globe characterized by dry summers and wet winters (Mediterranean climate; MED) are especially vulnerable to climate change. The potential impact on water resources, ecosystems and human livelihood requires a detailed picture of the future changes in this unique climate zone. Here we apply a probabilistic approach to quantitatively address how and why the geographic distribution of MED will change based on the latest-available climate projections for the 21st century. Our analysis provides, for the first time, a robust assessment of significant northward and eastward future expansions of MED over both the Euro-Mediterranean and western North America. Concurrently, we show a significant 21st century replacement of the equatorward MED margins by the arid climate type. Moreover, future winters will become wetter and summers drier in both the old and newly established MED zones. Should these projections be realized, living conditions in some of the most densely populated regions in the world will be seriously jeopardized.
Journal of Geophysical Research | 2007
Alessandro Dell'Aquila; Paolo Michele Ruti; Sandro Calmanti; Valerio Lucarini
[1] We compare the representation of the Southern Hemisphere midlatitude winter variability in the NCEP-NCAR and ERA40 reanalyses by using the Hayashi spectral technique. We find important discrepancies in the description of the atmospheric waves at different spatial and temporal scales. ERA40 is generally characterized by a larger variance, especially in the high-frequency spectral region. Compared to the Northern Hemisphere, the assimilated data are relatively scarce particularly over the oceans, and they provide a weak constraint to the assimilation system even in the period when satellite data are available. In the presatellite period the discrepancies between the two reanalyses are large and randomly distributed; after 1979 the discrepancies are systematic. This study suggests that, as for the winter midlatitude variability in the Southern Hemisphere, a well-defined picture to be used in the evaluation of climate model simulations is still lacking because of the nonconsistency of the reanalyses.
The Climate of the Mediterranean Region | 2012
Serge Planton; Piero Lionello; Artole Vincenzo; Rolland Aznar; Adriana Carrillo; Jeanne Colin; Letizia Congedi; Clotilde Dubois; Alberto Elizalde; Silvio Gualdi; Elke Hertig; Jucundus Jacobeit; Gabriel Jordá; Laurent Li; Annarita Mariotti; Claudio Piani; Paolo Michele Ruti; Emilia Sanchez-Gomez; Gianmaria Sannino; Florence Sevault; Samuel Somot; Michael N. Tsimplis
Future climate change over the Mediterranean area is investigated by means of climate model simulations covering the twenty-first century that take into account different anthropogenic greenhouse-gas-emission scenarios. This chapter first gives some new insights on these projections coming from the use of new methods, including the coupling at the regional scale of the atmospheric component to a Mediterranean Sea component. A synthesis of the expected changes of key aspects of the Mediterranean regional climate, obtained with a wide range of models and downscaling methods, is then presented. This includes an overview of not only expected changes in the mean climate and climate extremes but also possible changes in Mediterranean Sea temperature, salinity, circulation, water and heat budgets, and sea level. The chapter ends with some advanced results on the way to deal with uncertainties in climate projections and some discussion on the confidence that we can attribute to these projections.