Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jessie Jarvis is active.

Publication


Featured researches published by Jessie Jarvis.


Journal of Biosciences | 2015

Declines of seagrasses in a tropical harbour, North Queensland, Australia, are not the result of a single event.

S.A. McKenna; Jessie Jarvis; T.L. Sankey; Carissa Reason; Rob Coles; Michael Rasheed

A recent paper inferred that all seagrass in Cairns Harbour, tropical north-eastern Australia, had undergone ‘complete and catastrophic loss’ as a result of tropical cyclone Yasi in 2011. While we agree with the concern expressed, we would like to correct the suggestion that the declines were the result of a single climatic event and that all seagrass in Cairns Harbour were lost. Recent survey data and trend analysis from an on-ground monitoring program show that seagrasses in Cairns Harbour do remain, albeit at low levels, and the decline in seagrasses occurred over several years with cyclone Yasi having little additional impact. We have conducted annual on-ground surveys of seagrass distribution and the above-ground meadow biomass in Cairns Harbour and Trinity Inlet since 2001. This has shown a declining trend in biomass since a peak in 2004 and in area since it peaked in 2007. In 2012, seagrass area and above-ground biomass were significantly below the long-term (12 year) average but seagrass was still present. Declines were associated with regional impacts on coastal seagrasses from multiple years of above-average rainfall and severe storm and cyclone activity, similar to other nearby seagrass areas, and not as a result of a single event.


Scientific Reports | 2017

Long distance biotic dispersal of tropical seagrass seeds by marine mega-herbivores

Samantha Tol; Jessie Jarvis; Paul H. York; Alana Grech; Bradley C. Congdon; Rob Coles

Terrestrial plants use an array of animals as vectors for dispersal, however little is known of biotic dispersal of marine angiosperms such as seagrasses. Our study in the Great Barrier Reef confirms for the first time that dugongs (Dugong dugon) and green sea turtles (Chelonia mydas) assist seagrass dispersal. We demonstrate that these marine mega-herbivores consume and pass in faecal matter viable seeds for at least three seagrass species (Zostera muelleri, Halodule uninervis and Halophila decipiens). One to two seagrass seeds per g DW of faecal matter were found during the peak of the seagrass reproductive season (September to December), with viability on excretion of 9.13% ± 4.61% (SE). Using population estimates for these mega-herbivores, and data on digestion time (hrs), average daily movement (km h) and numbers of viable seagrass seeds excreted (per g DW), we calculated potential seagrass seed dispersal distances. Dugongs and green sea turtle populations within this region can disperse >500,000 viable seagrass seeds daily, with a maximum dispersal distance of approximately 650 km. Biotic dispersal of tropical seagrass seeds by dugongs and green sea turtles provides a large-scale mechanism that enhances connectivity among seagrass meadows, and aids in resilience and recovery of these coastal habitats.


Frontiers in Plant Science | 2018

The Role of Herbivory in Structuring Tropical Seagrass Ecosystem Service Delivery

Abigail L. Scott; Paul H. York; Clare Duncan; Peter I. Macreadie; Rod Martin Connolly; Megan T. Ellis; Jessie Jarvis; Kristin I. Jinks; Helene Marsh; Michael Rasheed

Seagrass meadows support key ecosystem services, via provision of food directly for herbivores, and indirectly to their predators. The importance of herbivores in seagrass meadows has been well-documented, but the links between food webs and ecosystem services in seagrass meadows have not previously been made explicit. Herbivores interact with ecosystem services – including carbon sequestration, cultural values, and coastal protection. Interactions can be positive or negative and depend on a range of factors including the herbivore identity and the grazing type and intensity. There can be unintended consequences from management actions based on a poor understanding of trade-offs that occur with complex seagrass-herbivore interactions. Tropical seagrass meadows support a diversity of grazers spanning the meso-, macro-, and megaherbivore scales. We present a conceptual model to describe how multiple ecosystem services are influenced by herbivore pressure in tropical seagrass meadows. Our model suggests that a balanced ecosystem, incorporating both seagrass and herbivore diversity, is likely to sustain the broadest range of ecosystem services. Our framework suggests the pathway to achieve desired ecosystem services outcomes requires knowledge on four key areas: (1) how size classes of herbivores interact to structure seagrass; (2) desired community and management values; (3) seagrass responses to top–down and bottom–up controls; (4) the pathway from intermediate to final ecosystem services and human benefits. We suggest research should be directed to these areas. Herbivory is a major structuring influence in tropical seagrass systems and needs to be considered for effective management of these critical habitats and their services.


PeerJ | 2017

Seed germination in a southern Australian temperate seagrass

Erin Cumming; Jessie Jarvis; Craig D. H. Sherman; Paul H. York; Timothy M. Smith

In a series of experiments, seeds from a temperate seagrass species, Zostera nigricaulis collected in Port Phillip Bay, Victoria, Australia were exposed to a range of salinities (20 PSU pulse/no pulse, 25 PSU, 30 PSU, 35 PSU), temperatures (13 °C, 17 °C, 22 °C), burial depths (0 cm, 1 cm, 2 cm) and site specific sediment characteristics (fine, medium, coarse) to quantify their impacts on germination rate and maximum overall germination. In southern Australia the seagrass Z. nigricaulis is a common subtidal species; however, little is known about the factors that affect seed germination which is a potential limiting factor in meadow resilience to natural and anthropogenic disturbances. Overall seed germination was low (<20%) with germination decreasing to <10% when seeds were placed in the sediment. When germination of Z. nigricaulis seeds was observed, it was enhanced (greater overall germination and shorter time to germination) when seeds were exposed to a 20 PSU pulse for 24 h, maintained at salinity of 25 PSU, temperatures <13 °C, in sediments with fine or medium grain sand and buried at a depth of <1 cm. These results indicate that germination of Z. nigricaulis seeds under in situ conditions may be seasonally limited by temperatures in southern Australia. Seed germination may be further restricted by salinity as freshwater pulses reaching 20 PSU are typically only observed in Port Phillip Bay following large scale rainfall events. As a result, these populations may be particularly susceptible to disturbance with only a seasonally limited capacity for recovery.


Estuaries and Coasts | 2016

Data infrastructures for estuarine and coastal ecological syntheses

Anne E. Thessen; Benjamin Fertig; Jessie Jarvis; Adelaide C. Rhodes

Holistic understanding of estuarine and coastal environments across interacting domains with high-dimensional complexity can profitably be approached through data-centric synthesis studies. Synthesis has been defined as “the inferential process whereby new models are developed from analysis of multiple data sets to explain observed patterns across a range of time and space scales.” Examples include ecological—across ecosystem components or organization levels, spatial—across spatial scales or multiple ecosystems, and temporal—across temporal scales. Though data quantity and volume are increasingly accessible, infrastructures for data sharing, management, and integration remain fractured. Integrating heterogeneous data sets is difficult yet critical. Technological and cultural obstacles hamper finding, accessing, and integrating data to answer scientific and policy questions. To investigate synthesis within the estuarine and coastal science community, we held a workshop at a coastal and estuarine research federation conference and conducted two case studies involving synthesis science. The workshop indicated that data-centric synthesis approaches are valuable for (1) hypothesis testing, (2) baseline monitoring, (3) historical perspectives, and (4) forecasting. Case studies revealed important weaknesses in current data infrastructures and highlighted opportunities for ecological synthesis science. Here, we list requirements for a coastal and estuarine data infrastructure. We model data needs and suggest directions for moving forward. For example, we propose developing community standards, accommodating and integrating big and small data (e.g., sensor feeds and single data sets), and digitizing ‘dark data’ (inaccessible, non-curated, non-archived data potentially destroyed when researchers leave science).


Archive | 2018

Reproductive, Dispersal and Recruitment Strategies in Australian Seagrasses

Craig D. H. Sherman; Timothy M. Smith; Paul H. York; Jessie Jarvis; Leonardo Ruiz-Montoya; Gary A. Kendrick

Seagrasses are a relatively small group of marine angiosperms that have successfully colonised the oceans and includes monecious, dioecious and hermaphroditic species. They display a range of mating systems, dispersal mechanisms and recruitment strategies that have allowed them to adapt and survive within the marine environment. This includes a general reduction in the size and complexity of floral structures, and subsurface pollination (hydrophily) in the majority of species. Fertilisation occurs through water-dispersed pollen that is typically filamentous and sticky, however, recent work has also suggested that marine invertebrates may play a role in pollen movement and fertilisation. Seed size and morphology varies widely among species, from fleshy floating fruit (e.g. Posidonia) to small negatively buoyant seeds less than 0.5 mm (e.g. Halophila). Nearly all species retain some capacity of asexual reproduction through rhizome elongation or the production of asexual fragment or propagules that can be more widely dispersed. These differences in reproductive strategies have important effects on recruitment and dispersal potential and subsequent population dynamics. Direct estimates of dispersal and recruitment are inherently difficult to assess in seagrasses, but the use of novel genetic and predictive modelling approaches are providing new insights into these important processes. This chapter highlights the main reproductive strategies and adaptations seagrass have undergone in response to reproducing in a marine environment, with an emphasis on Australian seagrass species. We highlight the current state of knowledge in Australian seagrass reproductive biology and future directions in seagrass reproductive biology research.


Aquatic Botany | 2014

Modeling loss and recovery of Zostera marina beds in the Chesapeake Bay: The role of seedlings and seed-bank viability

Jessie Jarvis; Mark J. Brush; Kenneth A. Moore


Ecological Modelling | 2016

A biophysical representation of seagrass growth for application in a complex shallow-water biogeochemical model

Mark E. Baird; Matthew P. Adams; Russ Babcock; Kadija Oubelkheir; Mathieu Mongin; Karen Wild-Allen; Jennifer H. Skerratt; Barbara J. Robson; Katherina Petrou; Peter J. Ralph; Katherine R. O’Brien; Alex Carter; Jessie Jarvis; Michael Rasheed


Archive | 2014

Seagrasses in Port Curtis and Rodds Bay 2014: annual long-term monitoring, biannual western basin, and updated baseline survey

Alex Carter; Jaclyn Davies; Catherine Bryant; Jessie Jarvis; S.A. McKenna; Rasheed


Archive | 2014

Port of Townsville annual monitoring and baseline survey: October 2013

J.N. Davies; S.A. McKenna; Jessie Jarvis; Alex Carter; Rasheed

Collaboration


Dive into the Jessie Jarvis's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rob Coles

James Cook University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge