Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Payam A. Saisan is active.

Publication


Featured researches published by Payam A. Saisan.


The Journal of Neuroscience | 2013

In vivo Stimulus-Induced Vasodilation Occurs without IP3 Receptor Activation and May Precede Astrocytic Calcium Increase

Krystal Nizar; Hana Uhlirova; Peifang Tian; Payam A. Saisan; Qun Cheng; Lidia Reznichenko; Kimberly L. Weldy; Tyler Steed; Vishnu B. Sridhar; Christopher L. MacDonald; Jianxia Cui; Sergey L. Gratiy; Sava Sakadzic; David A. Boas; Thomas Ibsa Beka; Gaute T. Einevoll; Ju Chen; Eliezer Masliah; Anders M. Dale; Gabriel A. Silva; Anna Devor

Calcium-dependent release of vasoactive gliotransmitters is widely assumed to trigger vasodilation associated with rapid increases in neuronal activity. Inconsistent with this hypothesis, intact stimulus-induced vasodilation was observed in inositol 1,4,5-triphosphate (IP3) type-2 receptor (R2) knock-out (KO) mice, in which the primary mechanism of astrocytic calcium increase—the release of calcium from intracellular stores following activation of an IP3-dependent pathway—is lacking. Further, our results in wild-type (WT) mice indicate that in vivo onset of astrocytic calcium increase in response to sensory stimulus could be considerably delayed relative to the simultaneously measured onset of arteriolar dilation. Delayed calcium increases in WT mice were observed in both astrocytic cell bodies and perivascular endfeet. Thus, astrocytes may not play a role in the initiation of blood flow response, at least not via calcium-dependent mechanisms. Moreover, an increase in astrocytic intracellular calcium was not required for normal vasodilation in the IP3R2-KO animals.


The Journal of Neuroscience | 2011

“Overshoot” of O2 Is Required to Maintain Baseline Tissue Oxygenation at Locations Distal to Blood Vessels

Anna Devor; Sava Sakadzic; Payam A. Saisan; Mohammad A. Yaseen; Emmanuel Roussakis; Vivek J. Srinivasan; Sergei A. Vinogradov; Bruce R. Rosen; Richard B. Buxton; Anders M. Dale; David A. Boas

In vivo imaging of cerebral tissue oxygenation is important in defining healthy physiology and pathological departures associated with cerebral disease. We used a recently developed two-photon microscopy method, based on a novel phosphorescent nanoprobe, to image tissue oxygenation in the rat primary sensory cortex in response to sensory stimulation. Our measurements showed that a stimulus-evoked increase in tissue pO2 depended on the baseline pO2 level. In particular, during sustained stimulation, the steady-state pO2 at low-baseline locations remained at the baseline, despite large pO2 increases elsewhere. In contrast to the steady state, where pO2 never decreased below the baseline, transient decreases occurred during the “initial dip” and “poststimulus undershoot.” These results suggest that the increase in blood oxygenation during the hemodynamic response, which has been perceived as a paradox, may serve to prevent a sustained oxygenation drop at tissue locations that are remote from the vascular feeding sources.


Journal of Cerebral Blood Flow and Metabolism | 2012

Frontiers in optical imaging of cerebral blood flow and metabolism

Anna Devor; Sava Sakadžić; Vivek J. Srinivasan; Mohammad A. Yaseen; Krystal Nizar; Payam A. Saisan; Peifang Tian; Anders M. Dale; Sergei A. Vinogradov; Maria Angela Franceschini; David A. Boas

In vivo optical imaging of cerebral blood flow (CBF) and metabolism did not exist 50 years ago. While point optical fluorescence and absorption measurements of cellular metabolism and hemoglobin concentrations had already been introduced by then, point blood flow measurements appeared only 40 years ago. The advent of digital cameras has significantly advanced two-dimensional optical imaging of neuronal, metabolic, vascular, and hemodynamic signals. More recently, advanced laser sources have enabled a variety of novel three-dimensional high-spatial-resolution imaging approaches. Combined, as we discuss here, these methods are permitting a multifaceted investigation of the local regulation of CBF and metabolism with unprecedented spatial and temporal resolution. Through multimodal combination of these optical techniques with genetic methods of encoding optical reporter and actuator proteins, the future is bright for solving the mysteries of neurometabolic and neurovascular coupling and translating them to clinical utility.


eLife | 2016

Cell type specificity of neurovascular coupling in cerebral cortex

Hana Uhlirova; Kıvılcım Kılıç; Peifang Tian; Martin Thunemann; Michèle Desjardins; Payam A. Saisan; Sava Sakadžić; Torbjørn V. Ness; Celine Mateo; Qun Cheng; Kimberly L. Weldy; Florence Razoux; Matthieu Vandenberghe; Jonathan A. Cremonesi; Christopher G. L. Ferri; Krystal Nizar; Vishnu B. Sridhar; Tyler Steed; Maxim Abashin; Yeshaiahu Fainman; Eliezer Masliah; Srdjan Djurovic; Ole A. Andreassen; Gabriel A. Silva; David A. Boas; David Kleinfeld; Richard B. Buxton; Gaute T. Einevoll; Anders M. Dale; Anna Devor

Identification of the cellular players and molecular messengers that communicate neuronal activity to the vasculature driving cerebral hemodynamics is important for (1) the basic understanding of cerebrovascular regulation and (2) interpretation of functional Magnetic Resonance Imaging (fMRI) signals. Using a combination of optogenetic stimulation and 2-photon imaging in mice, we demonstrate that selective activation of cortical excitation and inhibition elicits distinct vascular responses and identify the vasoconstrictive mechanism as Neuropeptide Y (NPY) acting on Y1 receptors. The latter implies that task-related negative Blood Oxygenation Level Dependent (BOLD) fMRI signals in the cerebral cortex under normal physiological conditions may be mainly driven by the NPY-positive inhibitory neurons. Further, the NPY-Y1 pathway may offer a potential therapeutic target in cerebrovascular disease. DOI: http://dx.doi.org/10.7554/eLife.14315.001


PLOS ONE | 2012

Properties of the Nucleo-Olivary Pathway: An In Vivo Whole-Cell Patch Clamp Study

Paolo Bazzigaluppi; Tom J. H. Ruigrok; Payam A. Saisan; Chris I. De Zeeuw; Marcel T. G. De Jeu

The inferior olivary nucleus (IO) forms the gateway to the cerebellar cortex and receives feedback information from the cerebellar nuclei (CN), thereby occupying a central position in the olivo-cerebellar loop. Here, we investigated the feedback input from the CN to the IO in vivo in mice using the whole-cell patch-clamp technique. This approach allows us to study how the CN-feedback input is integrated with the activity of olivary neurons, while the olivo-cerebellar system and its connections are intact. Our results show how IO neurons respond to CN stimulation sequentially with: i) a short depolarization (EPSP), ii) a hyperpolarization (IPSP) and iii) a rebound depolarization. The latter two phenomena can also be evoked without the EPSPs. The IPSP is sensitive to a GABAA receptor blocker. The IPSP suppresses suprathreshold and subthreshold activity and is generated mainly by activation of the GABAA receptors. The rebound depolarization re-initiates and temporarily phase locks the subthreshold oscillations. Lack of electrotonical coupling does not affect the IPSP of individual olivary neurons, nor the sensitivity of its GABAA receptors to blockers. The GABAergic feedback input from the CN does not only temporarily block the transmission of signals through the IO, it also isolates neurons from the network by shunting the junction current and re-initiates the temporal pattern after a fixed time point. These data suggest that the IO not only functions as a cerebellar controlled gating device, but also operates as a pattern generator for controlling motor timing and/or learning.


The Journal of Neuroscience | 2012

In Vivo Alterations in Calcium Buffering Capacity in Transgenic Mouse Model of Synucleinopathy

Lidia Reznichenko; Qun Cheng; Krystal Nizar; Sergey L. Gratiy; Payam A. Saisan; Edward Rockenstein; Tanya González; Christina Patrick; Brian Spencer; Paula Desplats; Anders M. Dale; Anna Devor; Eliezer Masliah

Abnormal accumulation of α-synuclein is centrally involved in the pathogenesis of many disorders with Parkinsonism and dementia. Previous in vitro studies suggest that α-synuclein dysregulates intracellular calcium. However, it is unclear whether these alterations occur in vivo. For this reason, we investigated calcium dynamics in transgenic mice expressing human WT α-synuclein using two-photon microscopy. We imaged spontaneous and stimulus-induced neuronal activity in the barrel cortex. Transgenic mice exhibited augmented, long-lasting calcium transients characterized by considerable deviation from the exponential decay. The most evident pathology was observed in response to a repetitive stimulation in which subsequent stimuli were presented before relaxation of calcium signal to the baseline. These alterations were detected in the absence of significant increase in neuronal spiking response compared with age-matched controls, supporting the possibility that α-synuclein promoted alterations in calcium dynamics via interference with intracellular buffering mechanisms. The characteristic shape of calcium decay and augmented response during repetitive stimulation can serve as in vivo imaging biomarkers in this model of neurodegeneration, to monitor progression of the disease and screen candidate treatment strategies.


Philosophical Transactions of the Royal Society B | 2016

The roadmap for estimation of cell-type-specific neuronal activity from non-invasive measurements

Hana Uhlirova; Kıvılcım Kılıç; Peifang Tian; Sava Sakadžić; Louis Gagnon; Martin Thunemann; Michèle Desjardins; Payam A. Saisan; Krystal Nizar; Mohammad A. Yaseen; Donald J. Hagler; Matthieu Vandenberghe; Srdjan Djurovic; Ole A. Andreassen; Gabriel A. Silva; Eliezer Masliah; David Kleinfeld; Sergei A. Vinogradov; Richard B. Buxton; Gaute T. Einevoll; David A. Boas; Anders M. Dale; Anna Devor

The computational properties of the human brain arise from an intricate interplay between billions of neurons connected in complex networks. However, our ability to study these networks in healthy human brain is limited by the necessity to use non-invasive technologies. This is in contrast to animal models where a rich, detailed view of cellular-level brain function with cell-type-specific molecular identity has become available due to recent advances in microscopic optical imaging and genetics. Thus, a central challenge facing neuroscience today is leveraging these mechanistic insights from animal studies to accurately draw physiological inferences from non-invasive signals in humans. On the essential path towards this goal is the development of a detailed ‘bottom-up’ forward model bridging neuronal activity at the level of cell-type-specific populations to non-invasive imaging signals. The general idea is that specific neuronal cell types have identifiable signatures in the way they drive changes in cerebral blood flow, cerebral metabolic rate of O2 (measurable with quantitative functional Magnetic Resonance Imaging), and electrical currents/potentials (measurable with magneto/electroencephalography). This forward model would then provide the ‘ground truth’ for the development of new tools for tackling the inverse problem—estimation of neuronal activity from multimodal non-invasive imaging data. This article is part of the themed issue ‘Interpreting BOLD: a dialogue between cognitive and cellular neuroscience’.


Archive | 2014

Functional Imaging of Cerebral Oxygenation with Intrinsic Optical Contrast and Phosphorescent Probes

Anna Devor; Sava Sakadžić; Mohammad A. Yaseen; Emmanuel Roussakis; Peifang Tian; Hamutal Slovin; Ivo Vanzetta; Ivan C. Teng; Payam A. Saisan; Louise E. Sinks; Anders M. Dale; Sergei A. Vinogradov; David A. Boas

Author(s): Devor, A; Sakadžic, S; Yaseen, MA; Roussakis, E; Tian, P; Slovin, H; Vanzetta, I; Teng, I; Saisan, PA; Sinks, LE; Dale, AM; Vinogradov, SA; Boas, DA | Abstract: Microscopic in vivo measurements of cerebral oxygenation are of key importance for understanding normal cerebral energy metabolism and its dysregulation in a wide range of clinical conditions. Relevant cerebral pathologies include compromised blood perfusion following stroke and a decrease in efficiency of single-cell respiratory processes that occurs in neurodegenerative diseases such as Alzheimers and Parkinsons disease. In this chapter we review a number of quantitative optical approaches to measuring oxygenation of blood and cerebral tissue. These methods can be applied to map the hemodynamic response and study neurovascular and neurometabolic coupling, and can provide microscopic imaging of biomarkers in animal models of human disease, which would be useful for screening potential therapeutic approaches.


Nature Communications | 2018

Deep 2-photon imaging and artifact-free optogenetics through transparent graphene microelectrode arrays

Martin Thunemann; Yichen Lu; Xin Liu; Kıvılcım Kılıç; Michèle Desjardins; Matthieu Vandenberghe; Sanaz Sadegh; Payam A. Saisan; Qun Cheng; Kimberly L. Weldy; Hongming Lyu; Srdjan Djurovic; Ole A. Andreassen; Anders M. Dale; Anna Devor; Duygu Kuzum

Recent advances in optical technologies such as multi-photon microscopy and optogenetics have revolutionized our ability to record and manipulate neuronal activity. Combining optical techniques with electrical recordings is of critical importance to connect the large body of neuroscience knowledge obtained from animal models to human studies mainly relying on electrophysiological recordings of brain-scale activity. However, integration of optical modalities with electrical recordings is challenging due to generation of light-induced artifacts. Here we report a transparent graphene microelectrode technology that eliminates light-induced artifacts to enable crosstalk-free integration of 2-photon microscopy, optogenetic stimulation, and cortical recordings in the same in vivo experiment. We achieve fabrication of crack- and residue-free graphene electrode surfaces yielding high optical transmittance for 2-photon imaging down to ~ 1 mm below the cortical surface. Transparent graphene microelectrode technology offers a practical pathway to investigate neuronal activity over multiple spatial scales extending from single neurons to large neuronal populations.Optical imaging and manipulation technologies cannot be easily integrated with electrical recordings due to generation of light-induced artifacts. Here the authors report the optimization of transparent graphene microelectrode fabrication to achieve artifact-free electrical recordings along with deep 2-photon imaging in vivo.


Frontiers in Neuroinformatics | 2014

Neurovascular Network Explorer 1.0: a database of 2-photon single-vessel diameter measurements with MATLAB® graphical user interface

Vishnu B. Sridhar; Peifang Tian; Anders M. Dale; Anna Devor; Payam A. Saisan

We present a database client software—Neurovascular Network Explorer 1.0 (NNE 1.0)—that uses MATLAB® based Graphical User Interface (GUI) for interaction with a database of 2-photon single-vessel diameter measurements from our previous publication (Tian et al., 2010). These data are of particular interest for modeling the hemodynamic response. NNE 1.0 is downloaded by the user and then runs either as a MATLAB script or as a standalone program on a Windows platform. The GUI allows browsing the database according to parameters specified by the user, simple manipulation and visualization of the retrieved records (such as averaging and peak-normalization), and export of the results. Further, we provide NNE 1.0 source code. With this source code, the user can database their own experimental results, given the appropriate data structure and naming conventions, and thus share their data in a user-friendly format with other investigators. NNE 1.0 provides an example of seamless and low-cost solution for sharing of experimental data by a regular size neuroscience laboratory and may serve as a general template, facilitating dissemination of biological results and accelerating data-driven modeling approaches.

Collaboration


Dive into the Payam A. Saisan's collaboration.

Top Co-Authors

Avatar

Anna Devor

University of California

View shared research outputs
Top Co-Authors

Avatar

Anders M. Dale

University of California

View shared research outputs
Top Co-Authors

Avatar

Peifang Tian

John Carroll University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mu-Han Yang

University of California

View shared research outputs
Top Co-Authors

Avatar

Hana Uhlirova

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge