Peter Schnauber
Technical University of Berlin
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Peter Schnauber.
Nature Communications | 2015
Manuel Gschrey; Alexander Thoma; Peter Schnauber; Mark Seifried; Ronny Schmidt; Benjamin Wohlfeil; Luzy Krüger; Jan-Hindrik Schulze; Tobias Heindel; Sven Burger; Frank Schmidt; A. Strittmatter; Sven Rodt; Stephan Reitzenstein
The success of advanced quantum communication relies crucially on non-classical light sources emitting single indistinguishable photons at high flux rates and purity. We report on deterministically fabricated microlenses with single quantum dots inside which fulfil these requirements in a flexible and robust quantum device approach. In our concept we combine cathodoluminescence spectroscopy with advanced in situ three-dimensional electron-beam lithography at cryogenic temperatures to pattern monolithic microlenses precisely aligned to pre-selected single quantum dots above a distributed Bragg reflector. We demonstrate that the resulting deterministic quantum-dot microlenses enhance the photon-extraction efficiency to (23±3)%. Furthermore we prove that such microlenses assure close to pure emission of triggered single photons with a high degree of photon indistinguishability up to (80±7)% at saturation. As a unique feature, both single-photon purity and photon indistinguishability are preserved at high excitation power and pulsed excitation, even above saturation of the quantum emitter.The prospect of realizing building blocks for long-distance quantum communication is a major driving force for the development of advanced nanophotonic devices. Significant progress has been achieved in this field with respect to the fabrication of efficient quantum-dot-based single-photon sources. More recently, even spin-photon entanglement and quantum teleportation have been demonstrated in semiconductor systems. These results are considered as crucial steps towards the realization of a quantum repeater. The related work has almost exclusively been performed on self-assembled quantum dots (QDs) and random device technology. At this point it is clear that further progress in this field towards real applications will rely crucially on deterministic device technologies which will, for instance, enable the processing of bright quantum light sources with pre-defined emission energy. Here we report on enhanced photon-extraction efficiency from monolithically integrated microlenses which are coupled deterministically to single QDs. The microlenses with diameters down to 800 nm were aligned to single QDs by in-situ electron-beam lithography using a low-temperature cathodoluminescence setup. This deterministic device technology allowed us to obtain an enhancement of photon extraction efficiency for QDs integrated into microlenses as compared to QDs in unstructured surfaces. The excellent optical quality of the structures is demonstrated by cathodoluminescence and micro-photoluminescence spectroscopy. A Hong-Ou-Mandel experiment states the emission of single indistinguishable photons.
Applied Physics Letters | 2015
Alexander Schlehahn; Mahmoud Gaafar; Max Vaupel; Manuel Gschrey; Peter Schnauber; Jan-Hindrik Schulze; Sven Rodt; A. Strittmatter; W. Stolz; Arash Rahimi-Iman; Tobias Heindel; Martin Koch; Stephan Reitzenstein
We report on the realization of a quantum dot (QD) based single-photon source with a record-high single-photon emission rate. The quantum light source consists of an InGaAs QD which is deterministically integrated within a monolithic microlens with a distributed Bragg reflector as back-side mirror, which is triggered using the frequency-doubled emission of a mode-locked vertical-external-cavity surface-emitting laser (ML-VECSEL). The utilized compact and stable laser system allows us to excite the single-QD microlens at a wavelength of 508 nm with a pulse repetition rate close to 500 MHz at a pulse width of 4.2 ps. Probing the photon statistics of the emission from a single QD state at saturation, we demonstrate single-photon emission of the QD-microlens chip with g(2)(0) < 0.03 at a record-high single-photon flux of (143 ± 16) MHz collected by the first lens of the detection system. Our approach is fully compatible with resonant excitation schemes using wavelength tunable ML-VECSELs, which will optimize ...
european quantum electronics conference | 2017
Tobias Heindel; Alexander Thoma; Martin von Helversen; Marco Schmidt; Alexander Schlehahn; Manuel Gschrey; Peter Schnauber; Jan-Hindrik Schulze; A. Strittmatter; J. Beyer; Sven Rodt; Alexander Carmele; Andreas Knorr; Stephan Reitzenstein
The realization of integrated light sources capable of emitting non-classical multi-photon states, is a fascinating, yet equally challenging task at the heart of quantum optics [1]. One example of such light-states are photon twins, which up till now have mostly been generated with low emission rates using probabilistic parametric down-conversion sources [2] or atoms [3].
Applied Physics Letters | 2017
Max Strauß; Arsenty Kaganskiy; Robert Voigt; Peter Schnauber; Jan-Hindrik Schulze; Sven Rodt; A. Strittmatter; Stephan Reitzenstein
Site-controlled growth of semiconductor quantum dots (QDs) represents a major advancement to achieve scalable quantum technology platforms. One immediate benefit is the deterministic integration of quantum emitters into optical microcavities. However, site-controlled growth of QDs is usually achieved at the cost of reduced optical quality. Here, we show that the buried-stressor growth technique enables the realization of high-quality site-controlled QDs with attractive optical and quantum optical properties. This is evidenced by performing excitation power dependent resonance fluorescence experiments at cryogenic temperatures showing QD emission linewidths down to 10 μeV. Resonant excitation leads to the observation of the Mollow triplet under CW excitation and enables coherent state preparation under pulsed excitation. Under resonant π-pulse excitation we observe clean single-photon emission associated with g(2)(0) = 0.12 limited by non-ideal laser suppression.
Nanotechnology | 2016
Peter Schnauber; Ronny Schmidt; Arsenty Kaganskiy; Tobias Heuser; Manuel Gschrey; Sven Rodt; Stephan Reitzenstein
We report on a 3D electron beam lithography (EBL) technique using polymethyl methacrylate (PMMA) in the negative-tone regime as a resist. First, we briefly demonstrate 3D EBL at room temperature. Then we concentrate on cryogenic temperatures where PMMA exhibits a low contrast, which allows for straightforward patterning of 3D nano- and microstructures. However, conventional EBL patterning at cryogenic temperatures is found to cause severe damage to the microstructures. Through an extensive study of lithography parameters, exposure techniques, and processing steps we deduce a hypothesis for the cryogenic PMMAs structural evolution under electron beam irradiation that explains the damage. In accordance with this hypothesis, a two step lithography technique involving a wide-area pre-exposure dose slightly smaller than the onset dose is applied. It enables us to demonstrate a >95% process yield for the low-temperature fabrication of 3D microstructures.
ACS Photonics | 2016
Tomasz Jakubczyk; Valentin Delmonte; Sarah Fischbach; Daniel Wigger; Doris Reiter; Quentin Mermillod; Peter Schnauber; Arsenty Kaganskiy; Jan-Hindrik Schulze; A. Strittmatter; Sven Rodt; Wolfgang Werner Langbein; Tilmann Kuhn; Stephan Reitzenstein; Jacek Kasprzak
Optimized light–matter coupling in semiconductor nanostructures is a key to understand their optical properties and can be enabled by advanced fabrication techniques. Using in situ electron beam lithography combined with a low-temperature cathodoluminescence imaging, we deterministically fabricate microlenses above selected InAs quantum dots (QDs), achieving their efficient coupling to the external light field. This enables performing four-wave mixing microspectroscopy of single QD excitons, revealing the exciton population and coherence dynamics. We infer the temperature dependence of the dephasing in order to address the impact of phonons on the decoherence of confined excitons. The loss of the coherence over the first picoseconds is associated with the emission of a phonon wave packet, also governing the phonon background in photoluminescence (PL) spectra. Using theory based on the independent boson model, we consistently explain the initial coherence decay, the zero-phonon line fraction, and the line shape of the phonon-assisted PL using realistic quantum dot geometries.
Nano Letters | 2018
Peter Schnauber; Johannes Schall; Samir Bounouar; Theresa Höhne; Suk-In Park; Geun-Hwan Ryu; Tobias Heindel; Sven Burger; Jin Dong Song; Sven Rodt; Stephan Reitzenstein
The development of multinode quantum optical circuits has attracted great attention in recent years. In particular, interfacing quantum-light sources, gates, and detectors on a single chip is highly desirable for the realization of large networks. In this context, fabrication techniques that enable the deterministic integration of preselected quantum-light emitters into nanophotonic elements play a key role when moving forward to circuits containing multiple emitters. Here, we present the deterministic integration of an InAs quantum dot into a 50/50 multimode interference beamsplitter via in situ electron beam lithography. We demonstrate the combined emitter-gate interface functionality by measuring triggered single-photon emission on-chip with g(2)(0) = 0.13 ± 0.02. Due to its high patterning resolution as well as spectral and spatial control, in situ electron beam lithography allows for integration of preselected quantum emitters into complex photonic systems. Being a scalable single-step approach, it paves the way toward multinode, fully integrated quantum photonic chips.
APL Photonics | 2017
Tobias Heindel; Alexander Thoma; I. Schwartz; Emma Schmidgall; Liron Gantz; Dan Cogan; Max Strauß; Peter Schnauber; Manuel Gschrey; Jan-Hindrik Schulze; A. Strittmatter; Sven Rodt; D. Gershoni; Stephan Reitzenstein
The dark exciton state in semiconductor quantum dots constitutes a long-lived solid-state qubit which has the potential to play an important role in implementations of solid-state based quantum information architectures. In this work, we exploit deterministically fabricated QD microlenses with enhanced photon extraction, to optically prepare and readout the dark exciton spin and observe its coherent precession. The optical access to the dark exciton is provided via spin-blockaded metastable biexciton states acting as heralding state, which are identified deploying polarization-sensitive spectroscopy as well as time-resolved photon cross-correlation experiments. Our experiments reveal a spin-precession period of the dark exciton of
Applied Physics Letters | 2018
Samir Bounouar; Christoph de la Haye; Max Strauß; Peter Schnauber; Alexander Thoma; Manuel Gschrey; Jan-Hindrik Schulze; A. Strittmatter; Sven Rodt; Stephan Reitzenstein
(0.82\pm0.01)\,
european quantum electronics conference | 2017
Peter Schnauber; Alexander Thoma; Jonas Bohm; Manuel Gschrey; Jan-Hindrik Schulze; A. Strittmatter; Sven Rodt; Tobias Heindel; Stephan Reitzenstein
ns corresponding to a fine-structure splitting of