Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Zhong-Yuan Chen is active.

Publication


Featured researches published by Zhong-Yuan Chen.


Veterinary Research | 2013

Genome architecture changes and major gene variations of Andrias davidianus ranavirus (ADRV)

Zhong-Yuan Chen; Jian-Fang Gui; Xiao-Chan Gao; Chao Pei; Yijiang Hong; Qi-Ya Zhang

Ranaviruses are emerging pathogens that have led to global impact and public concern. As a rarely endangered species and the largest amphibian in the world, the Chinese giant salamander, Andrias davidianus, has recently undergone outbreaks of epidemic diseases with high mortality. In this study, we isolated and identified a novel ranavirus from the Chinese giant salamanders that exhibited systemic hemorrhage and swelling syndrome with high death rate in China during May 2011 to August 2012. The isolate, designated Andrias davidianus ranavirus (ADRV), not only could induce cytopathic effects in different fish cell lines and yield high viral titers, but also caused severely hemorrhagic lesions and resulted in 100% mortality in experimental infections of salamanders. The complete genome of ADRV was sequenced and compared with other sequenced amphibian ranaviruses. Gene content and phylogenetic analyses revealed that ADRV should belong to an amphibian subgroup in genus Ranavirus, and is more closely related to frog ranaviruses than to other salamander ranaviruses. Homologous gene comparisons show that ADRV contains 99%, 97%, 94%, 93% and 85% homologues in RGV, FV3, CMTV, TFV and ATV genomes respectively. In addition, several variable major genes, such as duplicate US22 family-like genes, viral eukaryotic translation initiation factor 2 alpha gene and novel 75L gene with both motifs of nuclear localization signal (NLS) and nuclear export signal (NES), were predicted to contribute to pathogen virulence and host susceptibility. These findings confirm the etiologic role of ADRV in epidemic diseases of Chinese giant salamanders, and broaden our understanding of evolutionary emergence of ranaviruses.


Developmental and Comparative Immunology | 2014

Extensive diversification of MHC in Chinese giant salamanders Andrias davidianus (Anda-MHC) reveals novel splice variants

Rong Zhu; Zhong-Yuan Chen; Jun Wang; Jiang-Di Yuan; Xiang-yong Liao; Jian-Fang Gui; Qi-Ya Zhang

A series of MHC alleles (including 26 class IA, 27 class IIA, and 17 class IIB) were identified from Chinese giant salamander Andrias davidianus (Anda-MHC). These genes are similar to classical MHC molecules in terms of characteristic domains, functional residues, deduced tertiary structures and genetic diversity. The majority of variation between alleles is found in the putative peptide-binding region (PBR), which is driven by positive Darwinian selection. The coexistence of two isoforms in MHC IA, IIA, and IIB alleles are shown: one full-length transcript and one novel splice variant. Despite lake of the external domains, these variants exhibit similar subcellular localization with the full-length transcripts. Moreover, the expression of MHC isoforms are up-regulated upon in vivo and in vitro stimulation with Andrias davidianus ranavirus (ADRV), suggesting their potential roles in the immune response. The results provide insights into understanding MHC variation and function in this ancient and endangered urodele amphibian.


Veterinary Microbiology | 2012

The antiviral defense mechanisms in mandarin fish induced by DNA vaccination against a rhabdovirus.

Zhong-Yuan Chen; Xiao-Ying Lei; Qi-Ya Zhang

Plasmid DNAs containing Siniperca chuatsi rhabdovirus (SCRV) glycoprotein gene (pcDNA-G) and nucleoprotein gene (pcDNA-N) were constructed, and used to determine the antiviral immune response elicited by DNA vaccination in mandarin fish. In vitro and in vivo expression of the plasmid constructs was confirmed in transfected cells and muscle tissues of vaccinated fish by Western blot, indirect immunofluorescence or RT-PCR analysis. Fish injected with pcDNA-G exhibited protective effect against SCRV challenge with a relative percent survival (RPS) of 77.5%, but no significant protection (RPS of 2.5%) was observed in fish vaccinated with pcDNA-N. Immunohistochemical analysis showed that vaccination with pcDNA-G decreased histological lesions and suppressed the virus replication in fish target organs, e.g. kidney, liver, spleen, gill and heart. Transcriptional analysis further revealed that the expression levels of type I IFN system genes including interferon regulation factor-7 (IRF-7) gene, myxovirus resistance (Mx) gene and virus inhibitory protein (Viperin) gene were strongly up-regulated after injection with pcDNA-G, whereas the level of transcription of immunoglobulin M (IgM) gene did not show a statistically significant change. These results reveal that type I IFN antiviral immune response is rapidly triggered by the plasmid DNA containing rhabdovirus glycoprotein gene in fish, which offers an explanation of molecular mechanisms for DNA vaccination inducing mandarin fish resist to SCRV disease.


Developmental and Comparative Immunology | 2014

Thymus cDNA library survey uncovers novel features of immune molecules in Chinese giant salamander Andrias davidianus

Rong Zhu; Zhong-Yuan Chen; Jun Wang; Jiang-Di Yuan; Xiang-yong Liao; Jian-Fang Gui; Qi-Ya Zhang

A ranavirus-induced thymus cDNA library was constructed from Chinese giant salamander, the largest extant amphibian species. Among the 137 putative immune-related genes derived from this library, these molecules received particular focus: immunoglobulin heavy chains (IgM, IgD, and IgY), IFN-inducible protein 6 (IFI6), and T cell receptor beta chain (TCRβ). Several unusual features were uncovered: IgD displays a structure pattern distinct from those described for other amphibians by having only four constant domains plus a hinge region. A unique IgY form (IgY(ΔFc)), previously undescribed in amphibians, is present in serum. Alternative splicing is observed to generate IgH diversification. IFI6 is newly-identified in amphibians, which occurs in two forms divergent in subcelluar distribution and antiviral activity. TCRβ immunoscope profile follows the typical vertebrate pattern, implying a polyclonal T cell repertoire. Collectively, the pioneering survey of ranavirus-induced thymus cDNA library from Chinese giant salamander reveals immune components and characteristics in this primitive amphibian.


Diseases of Aquatic Organisms | 2013

Isolation and identification of a lethal rhabdovirus from farmed rice field eels Monopterus albus

Tong Ou; Ruo-Lin Zhu; Zhong-Yuan Chen; Qi-Ya Zhang

We provide the first description of a virus responsible for a systemic hemorrhagic disease causing high mortality in farmed rice field eels Monopterus albus in China. Typical signs exhibited by the diseased fish were extensive hemorrhages in the skin and viscera and some neurological signs, such as loss of equilibrium and disorganized swimming. Histopathological examination revealed various degrees of necrosis within the spleen and liver. Virus isolation was attempted from visceral tissues of diseased fish by inoculation on 6 fish cell lines. Typical cytopathic effects (CPE) were produced in bluegill fry (BF2) cells, so this cell line was chosen for further isolation and propagation of the virus. Electron microscopy observation showed that the negative stained viral particles had the characteristic bullet shape of rhabdoviruses and an estimated size of 60 × 120 nm. We therefore tentatively refer to this virus as Monopterus albus rhabdovirus (MoARV). Molecular characterization of MoARV, including sequence analysis of the nucleoprotein (N), phosphoprotein (P), and glycoprotein (G) genes, revealed 94.5 to 97.3% amino acid similarity to that of Siniperca chuatsi rhabdovirus. Phylogenetic analysis based on the amino acid sequences of N and G proteins indicated that MoARV should be a member of the genus Vesiculovirus. Kochs postulates were fulfilled by infecting healthy rice field eels with MoARV, which produced an acute infection. RT-PCR analysis demonstrated that MoARV RNA could be detected in both naturally and experimentally infected fish. The data suggest that MoARV was the causative pathogen of the disease.


Archives of Virology | 2016

Complete genome sequence and architecture of crucian carp Carassius auratus herpesvirus (CaHV)

Xiao-Tao Zeng; Zhong-Yuan Chen; Yuan-Sheng Deng; Jian-Fang Gui; Qi-Ya Zhang

Crucian carp Carassius auratus herpesvirus (CaHV) was isolated from diseased crucian carp with acute gill hemorrhages and high mortality. The CaHV genome was sequenced and analyzed. The data showed that it consists of 275,348 bp and contains 150 predicted ORFs. The architecture of the CaHV genome differs from those of four cyprinid herpesviruses (CyHV1, CyHV2, SY-C1, CyHV3), with insertions, deletions and the absence of a terminal direct repeat. Phylogenetic analysis of the DNA polymerase sequences of 17 strains of Herpesvirales members, and the concatenated 12 core ORFs from 10 strains of alloherpesviruses showed that CaHV clustered together with members of the genus Cyprinivirus, family Alloherpesviridae.


Veterinary Research | 2015

Establishment of three cell lines from Chinese giant salamander and their sensitivities to the wild-type and recombinant ranavirus

Jiang-Di Yuan; Zhong-Yuan Chen; Xing Huang; Xiao-Chan Gao; Qi-Ya Zhang

Known as lethal pathogens, Ranaviruses have been identified in diseased fish, amphibians (including Chinese giant salamander Andrias davidianus, the world’s largest amphibian) and reptiles, causing organ necrosis and systemic hemorrhage. Here, three Chinese giant salamander cell lines, thymus cell line (GSTC), spleen cell line (GSSC) and kidney cell line (GSKC) were initially established. Their sensitivities to ranaviruses, wild-type Andrias davidianus ranavirus (ADRV) and recombinant Rana grylio virus carrying EGFP gene (rRGV-EGFP) were tested. Temporal transcription pattern of ranavirus major capsid protein (MCP), fluorescence and electron microscopy observations showed that both the wild-type and recombinant ranavirus could replicate in the cell lines.


Viruses | 2015

Whole-Genome Analysis of a Novel Fish Reovirus (MsReV) Discloses Aquareovirus Genomic Structure Relationship with Host in Saline Environments.

Zhong-Yuan Chen; Xiao-Chan Gao; Qi-Ya Zhang

Aquareoviruses are serious pathogens of aquatic animals. Here, genome characterization and functional gene analysis of a novel aquareovirus, largemouth bass Micropterus salmoides reovirus (MsReV), was described. It comprises 11 dsRNA segments (S1–S11) covering 24,024 bp, and encodes 12 putative proteins including the inclusion forming-related protein NS87 and the fusion-associated small transmembrane (FAST) protein NS22. The function of NS22 was confirmed by expression in fish cells. Subsequently, MsReV was compared with two representative aquareoviruses, saltwater fish turbot Scophthalmus maximus reovirus (SMReV) and freshwater fish grass carp reovirus strain 109 (GCReV-109). MsReV NS87 and NS22 genes have the same structure and function with those of SMReV, whereas GCReV-109 is either missing the coiled-coil region in NS79 or the gene-encoding NS22. Significant similarities are also revealed among equivalent genome segments between MsReV and SMReV, but a difference is found between MsReV and GCReV-109. Furthermore, phylogenetic analysis showed that 13 aquareoviruses could be divided into freshwater and saline environments subgroups, and MsReV was closely related to SMReV in saline environments. Consequently, these viruses from hosts in saline environments have more genomic structural similarities than the viruses from hosts in freshwater. This is the first study of the relationships between aquareovirus genomic structure and their host environments.


Virus Research | 2016

Rana grylio virus TK and DUT gene locus could be simultaneously used for foreign gene expression

Xing Huang; Jin Fang; Zhong-Yuan Chen; Qi-Ya Zhang

Ranaviruses (family Iridoviridae, genus Ranavirus) have been recognized as emerging infectious pathogens and caused a great loss to the global biodiversity. Thymidine kinase (TK) and deoxyuridine triphosphatase (dUTPase, DUT, encoded by ORF 67R) are ubiquitous, existing in iridoviruses and other organisms. Previous studies showed that TK and DUT could be individually knocked out without impeding viral replication. In this study, we tried to insert two fluorescence genes into the above loci. We started with Δ67R-RGV, a recently generated recombinant Rana grylio virus (RGV) with the whole DUT replaced by enhanced green fluorescence protein (EGFP) gene. Then, a red fluorescence protein (RFP) gene initiated by RGV immediate-early (IE) ICP18 gene promoter was inserted into TK locus through homologous recombination. A novel recombinant virus, ΔDUT, TK-RGV, was generated by nine successive rounds of plaque isolation using RFP selection. All of the plaques produced by this recombinant virus could emit both green and red fluorescence. Furthermore, one-step and multiple-step growth curves of ΔDUT, TK-RGV were similar to those of wt-RGV and Δ67R-RGV. In conclusion, a novel dual-fluorescence labeled recombinant iridovirus in which DUT and TK gene locus were simultaneously used for foreign gene expression was constructed.


Journal of Comparative Pathology | 2015

Morphological Changes in Amphibian and Fish Cell Lines Infected with Andrias davidianus Ranavirus

Xiao-Chan Gao; Zhong-Yuan Chen; Jiang-Di Yuan; Qi-Ya Zhang

Andrias davidianus ranavirus (ADRV) is an emerging viral pathogen that causes severe disease in Chinese giant salamanders, the largest extant amphibian in the world. A fish cell line, Epithelioma papulosum cyprinid (EPC), and a new amphibian cell line, Chinese giant salamander spleen cell (GSSC), were infected with ADRV and observed by light and electron microscopy. The morphological changes in these two cell lines infected with ADRV were compared. Cytopathic effect (CPE) began with rounding of the cells, progressing to cell detachment in the cell monolayer, followed by cell lysis. Significant CPE was visualized as early as 24 h post infection (hpi) in EPC cells and at 36 hpi in GSSC cells. Microscopical examination showed clear and significant CPE in EPC cells, while less extensive and irregular CPE with some adherent cells remaining was observed in GSSC cells. Following ADRV infection, CPE became more extensive. Transmission electron micrographs showed many virus particles around cytoplasmic vacuoles, formed as crystalline arrays or scattered in the cytoplasm of infected cells. Infected cells showed alteration in nuclear morphology, with condensed and marginalized nuclear chromatin on the inner aspect of the nuclear membrane and formation of a cytoplasmic viromatrix adjacent to the nucleus in both cell lines. Some virus particles were also detected in the nucleus of infected GSSC cells. Both cell lines are able to support replication of ADRV and can therefore be used to investigate amphibian ranaviruses.

Collaboration


Dive into the Zhong-Yuan Chen's collaboration.

Top Co-Authors

Avatar

Qi-Ya Zhang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Xiao-Chan Gao

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Jian-Fang Gui

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Chao Pei

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Jiang-Di Yuan

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Fei Ke

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Jia Liu

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Jun Wang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Rong Zhu

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Tao Li

Chinese Academy of Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge