Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where R. A. Henderson is active.

Publication


Featured researches published by R. A. Henderson.


Radiochimica Acta | 2010

Indication for a volatile element 114

R. Eichler; N. V. Aksenov; Yu.V. Albin; A. V. Belozerov; G. A. Bozhikov; V. I. Chepigin; S. N. Dmitriev; R. Dressler; H. W. Gäggeler; V. A. Gorshkov; R. A. Henderson; Amanda M. Johnsen; J. M. Kenneally; V. Ya. Lebedev; O. N. Malyshev; K. J. Moody; Yu. Ts. Oganessian; O. V. Petrushkin; D. Piguet; A. G. Popeko; P. Rasmussen; A. Serov; D. A. Shaughnessy; S. V. Shishkin; A. V. Shutov; M. A. Stoyer; N. J. Stoyer; A. I. Svirikhin; E. E. Tereshatov; G. K. Vostokin

Abstract Recently, the chemical investigation of element 112 revealed a highly volatile, noble metallic behaviour, as expected for the last group 12 member of the periodic table. The observed volatility and chemical inertness were ascribed to the growing influence of relativistic effects on the chemical properties of the heaviest elements with increasing nuclear charge. Here, we report for the first time on gas phase chemical experiments aiming at a determination of element 114 properties. This element was investigated using its isotopes 287114 and 288114 produced in the nuclear fusion reactions of 48Ca with 242Pu and 244Pu, respectively. Identification of three atoms of element 114 in thermochromatography experiments and their deposition pattern on a gold surface indicates that this element is at least as volatile as simultaneously investigated elements Hg, At, and element 112. This behaviour is rather unexpected for a typical metal of group 14.


Journal of Instrumentation | 2012

Two detector arrays for fast neutrons at LANSCE

R. Haight; H.Y. Lee; T.N. Taddeucci; J.M. O'Donnell; B.A. Perdue; N. Fotiades; M. Devlin; J. L. Ullmann; A. Laptev; T. A. Bredeweg; M. Jandel; R. O. Nelson; S.A. Wender; Morgan C. White; C.Y. Wu; E. Kwan; A. Chyzh; R. A. Henderson; J. M. Gostic

The neutron spectrum from neutron-induced fission needs to be known in designing new fast reactors, predicting criticality for safety analyses, and developing techniques for global security application. The experimental data base of fission neutron spectra is very incomplete and most present evaluated libraries are based on the approach of the Los Alamos Model. To validate these models and to provide improved data for applications, a program is underway to measure the fission neutron spectrum for a wide range of incident neutron energies using the spallation source of fast neutrons at the Weapons Neutron Research (WNR) facility at the Los Alamos Neutron Science Center (LANSCE). In a double time-of-flight experiment, fission neutrons are detected by arrays of neutron detectors to increase the solid angle and also to investigate possible angular dependence of the fission neutrons. The challenge is to measure the spectrum from low energies, down to 100 keV or so, to energies over 10 MeV, where the evaporation-like spectrum decreases by 3 orders of magnitude from its peak around 1 MeV. For these measurements, we are developing two arrays of neutron detectors, one based on liquid organic scintillators and the other on 6Li-glass detectors. The range of fission neutrons detected by organic liquid scintillators extends from about 600 keV to well over 10 MeV, with the lower limit being defined by the limit of pulse-shape discrimination. The 6Li-glass detectors have a range from very low energies to about 1 MeV, where their efficiency then becomes small. Various considerations and tests are in progress to understand important contributing factors in designing these two arrays and they include selection and characterization of photomultiplier tubes (PM), the performance of relatively thin (1.8 cm) 6Li-glass scintillators on 12.5 cm diameter PM tubes, use of 17.5 cm diameter liquid scintillators with 12.5 cm PM tubes, measurements of detector efficiencies with tagged neutrons from the WNR/LANSCE neutron beam, and efficiency calibration with 252Cf spontaneous fission neutrons. Design considerations and test results are presented.


IEEE Transactions on Nuclear Science | 2013

Development of Neutron Detector Arrays for Neutron-Induced Reaction Measurements

B.A. Perdue; R. Haight; H.Y. Lee; T.N. Taddeucci; J.M. O'Donnell; Morgan C. White; Nikolaos Fotiadis; M. Devlin; J. L. Ullmann; A. Laptev; T. A. Bredeweg; M. Jandel; R. O. Nelson; S.A. Wender; C.Y. Wu; E. Kwan; A. Chyzh; R. A. Henderson; J. M. Gostic

The outgoing neutron energy spectra from neutron-induced fission of various actinides are important for basic understanding of the fission process near the scission point as well as playing a large role in neutron transport codes, which are heavily relied upon in the design of advanced nuclear reactors and simulations of critical assemblies. The reliability of the results of neutron transport models is a strong function of the quality of the nuclear data used as input. Currently, the worlds experimental database of fission neutron spectra is severely incomplete (especially for higher incident neutron energies) with large uncertainties in key portions of the outgoing energy spectra. Many transport codes use evaluated data libraries, which are based on the approach of the Los Alamos model. Other theoretical models have been developed, but the available data cannot distinguish the results of different models (as is the case for 239Pu). Better measurements are needed for all incident and outgoing neutron energies, but most urgently in the low-energy (below 1 MeV) and high-energy (above 6 MeV) portions of the outgoing spectra where theoretical model results differ greatly. We present the design considerations (and some characterization results) of the two Chi-Nu neutron detector arrays: one array of 6Li-glass detectors and one array of liquid-scintillator detectors. These detector arrays are being constructed to meet the challenge of measuring the prompt fission neutron spectra (for a few common actinides) to a higher accuracy and precision than achieved previously and over a larger incident energy range than has been covered by previous experimenters. We see a significant reduction in neutron-scattering backgrounds with our new array designs.


Journal of Physics: Conference Series | 2015

Production and decay of the heaviest odd-Z nuclei in the 249Bk + 48Ca reaction

Yu. Ts. Oganessian; F. Sh. Abdullin; Charles W Alexander; J. Binder; R. A. Boll; S. N. Dmitriev; J. G. Ezold; K. Felker; J. M. Gostic; R. K. Grzywacz; J. H. Hamilton; R. A. Henderson; M. G. Itkis; K. Miernik; D. Miller; K. J. Moody; A. N. Polyakov; A. V. Ramayya; J. B. Roberto; M. A. Ryabinin; K. Rykaczewski; R. N. Sagaidak; D. A. Shaughnessy; I. V. Shirokovsky; M. V. Shumeiko; M. A. Stoyer; N. J. Stoyer; V. G. Subbotin; A. M. Sukhov; Yu. S. Tsyganov

The reaction of 249Bk with 48Ca has been investigated with an aim of synthesizing and studying the decay properties of isotopes of the new element 117. The experiments were performed at five projectile energies (in two runs, in 2009-2010 and 2012) and with a total beam dose of 48Ca ions of about 9x1019 The experiments yielded data on a-decay characteristics and excitation functions of the produced nuclei that establish these to be 293117 and 294117 – the products of the 4n- and 3n-evaporation channels, respectively. In total, we have observed 20 decay chains of Z=117 nuclides. The cross sections were measured to be 1.1 pb for the 3n and 2.4 pb for the 4n-reaction channel. The new 289115 events, populated by α decay of 117, demonstrate the same decay properties as those observed for 115 produced in the 243Am(48Ca,2n) reaction thus providing cross-bombardment evidence. In addition, a single decay of 294118 was observed from the reaction with 249Cf – a result of the in-growth of 249Cf in the 249Bk target. The observed decay chain of 294118 is in good agreement with decay properties obtained in 2002-2005 in the experiments with the reaction 249Cf(48Ca,3n)294118. The energies and half-lives of the odd-Z isotopes observed in the 117 decay chains together with the results obtained for lower-Z superheavy nuclei demonstrate enhancement of nuclear stability with increasing neutron number towards the predicted new magic number N=184.


Journal of Physics: Conference Series | 2013

New data from the 243Am + 48Ca reaction give cross-bombardment verification of elements 113, 115 and 117

J. H. Hamilton; Yu. Ts. Oganessian; F. Sh. Abdullin; S. N. Dmitriev; J. M. Gostic; R. A. Henderson; M. G. Itkis; K. J. Moody; A. N. Polyakov; A. V. Ramayya; J. B. Roberto; K. Rykaczewski; R. N. Sagaidak; D. A. Shaughnessy; I V Shirkovsky; M. A. Stoyer; N. J. Stoyer; V. G. Subbotin; A. M. Sukhov; Yu. S. Tsyganov; V. K. Utyonkov; A. A. Voinov; G. K. Vostokin

The reaction 243Am + 48Ca has been reinvestigated to provide new evidence for the discovery of elements 113, 115. Twenty eight new 288115 decay chains were detected in this reaction to increase from three to 31 the number of 288115 atoms observed. In addition, four new decay chains were observed for the first time and assigned to the decay of 289115. These new 289115 events have the same properties for their decay chains as those observed for 289115 populated in the alpha decay of 293117 produced in the 249Bk + 48Ca reaction to provide cross-bombardment evidence. These new high statistics data sets and the cross-bombardment agreement provide definitive evidence for the discoveries of the new elements with Z = 113, 115, 117.


CAPTURE GAMMA‐RAY SPECTROSCOPY AND RELATED TOPICS: Proceedings of the 13th#N#International Symposium on Capture Gamma‐Ray Spectroscopy and Related Topics | 2009

Neutron capture and neutron‐induced fission experiments on americium isotopes with DANCE

M. Jandel; T. A. Bredeweg; M. A. Stoyer; C. Y. Wu; M. M. Fowler; J. A. Becker; E. M. Bond; A. Couture; R. Haight; R.J. Haslett; R. A. Henderson; A.L. Keksis; J. M. O’Donnell; R. S. Rundberg; J. L. Ullmann; D. J. Vieira; J. B. Wilhelmy; J. M. Wouters

Neutron capture cross section data on Am isotopes were measured using the Detector for Advanced Neutron Capture Experiments (DANCE) at Los Alamos National Laboratory. The neutron capture cross section was determined for 241Am for neutron energies between thermal and 320 keV. Preliminary results were also obtained for 243Am for neutron energies between 10 eV and 250 keV. The results on concurrent neutron‐induced fission and neutron‐capture measurements on 242mAm will be presented where the fission events were actively triggered during the experiments. In these experiments, a Parallel‐Plate Avalanche Counter (PPAC) detector that surrounds the target located in the center of the DANCE array was used as a fission‐tagging detector to separate (n,γ) events from (n,f) events. The first direct observation of neutron capture on 242mAm in the resonance region in between 2 and 9 eV of the neutron energy was obtained.


Journal of Physics: Conference Series | 2011

Synthesis of the New Element with Z=117

J. H. Hamilton; Yu. Ts. Oganessian; F. Sh. Abdullin; P. D. Bailey; D. E. Benker; M. E. Bennett; S. N. Dmitriev; J. G. Ezold; R. A. Henderson; M. G. Itkis; Yu. V. Lobanov; A. N. Mezentsev; K. J. Moody; S. L. Nelson; A. N. Polyakov; C. E. Porter; A. V. Ramayya; F. D. Riley; J. B. Roberto; M. A. Ryabinin; K. Rykaczewski; R. N. Sagaidak; D. A. Shaughnessy; I. V. Shirokovsky; M. A. Stoyer; V. G. Subbotin; Ralf Sudowe; A. M. Sukhov; Tu S Tsyganov; V. K. Utyonkov

The synthesis of the new chemical element with atomic number Z=117 is presented. The isotopes 293117 and 294117were produced in fusion reactions between 48Ca and 249Bk. The 249Bk was produced in the High Flux Isotope Reactor and chemically separated at Oak Ridge. Decay chains involving eleven new nuclei were identified by means of the Dubna Gas Filled Recoil Separator. The measured decay properties show a strong rise of stability for super-heavy nuclei toward N=184.


Archive | 2016

Milestone 5431: Chi-Nu Measurements of Prompt Fission Neutron Spectra (PFNS)

Morgan C. White; M. Devlin; Jaime A. Gomez; R. Haight; Hye Young Lee; T.N. Taddeucci; S. Mosby; John Michael O'Donnell; K. J. Kelly; Nikolaos Fotiadis; Michael Evan Rising; D. Neudecker; Clell J Solomon; Ching-Yen Wu; B. Bucher; Matthew Quinn Buckner; R. A. Henderson

This presentation offers an overview of the Chi-Nu project, its results, evaluation, and plans for FY17.


Journal of Radioanalytical and Nuclear Chemistry | 2015

Characterization of Group 5 dubnium homologs on diglycolamide extraction chromatography resins from nitric and hydrofluoric acid matrices

John D. Despotopulos; J. M. Gostic; Megan E. Bennett; Narek Gharibyan; R. A. Henderson; K. J. Moody; Ralf Sudowe; Dawn A. Shaughnessy

A diglycolamide-based resin was characterized for Group 5 (Ta, Nb and pseudo-homolog Pa) separation from Group 4 (Hf and Zr) and tri-valent actinides (Am). The batch uptake of the radionuclides of interest were determined for HNO3/HF matrices and the results were used to develop a column separation method that could be used for element 105 (Db) purification chemistry. Tantalum is significantly retained by the TODGA resin, while Pa/Nb show little to no retention. The affinity for Ta decreases as a function of increased [HNO3], while Zr/Hf (and Am) affinities increase under the same conditions. Adsorption of Ta to polypropylene vials and column frits became a significant focus of this work following several observations made during the course of the column separation method development. All of the Group 5 elements were separated from Group 4 and Am while Ta may be completely isolated from Nb/Pa with the TODGA resin with improvements in column parameters: column height and bed volume.


Physical Review C | 2009

Attempt to produce element 120 in the {sup 244}Pu+{sup 58}Fe reaction

Yu. Ts. Oganessian; V. K. Utyonkov; Yu. V. Lobanov; F. Sh. Abdullin; A. N. Polyakov; R. N. Sagaidak; I. V. Shirokovsky; Yu. S. Tsyganov; A. A. Voinov; A. N. Mezentsev; V. G. Subbotin; A. M. Sukhov; K. Subotic; V. I. Zagrebaev; S. N. Dmitriev; R. A. Henderson; K. J. Moody; J. M. Kenneally; J.H. Landrum

An experiment aimed at the synthesis of isotopes of element 120 has been performed using the {sup 244}Pu({sup 58}Fe,xn){sup 302-x} 120 reaction. No decay chains consistent with fusion-evaporation reaction products were observed during an irradiation with a beam dose of 7.1 x 10{sup 18} 330-MeV {sup 58}Fe projectiles. The sensitivity of the experiment corresponds to a cross section of 0.4 pb for the detection of one decay.

Collaboration


Dive into the R. A. Henderson's collaboration.

Top Co-Authors

Avatar

T. A. Bredeweg

Los Alamos National Laboratory

View shared research outputs
Top Co-Authors

Avatar

R. Haight

Los Alamos National Laboratory

View shared research outputs
Top Co-Authors

Avatar

M. Jandel

Los Alamos National Laboratory

View shared research outputs
Top Co-Authors

Avatar

A. Chyzh

North Carolina State University

View shared research outputs
Top Co-Authors

Avatar

J. M. Gostic

Lawrence Livermore National Laboratory

View shared research outputs
Top Co-Authors

Avatar

C.Y. Wu

Lawrence Livermore National Laboratory

View shared research outputs
Top Co-Authors

Avatar

J. L. Ullmann

Los Alamos National Laboratory

View shared research outputs
Top Co-Authors

Avatar

M. A. Stoyer

Lawrence Livermore National Laboratory

View shared research outputs
Top Co-Authors

Avatar

J.M. O'Donnell

Los Alamos National Laboratory

View shared research outputs
Top Co-Authors

Avatar

K. J. Moody

Lawrence Livermore National Laboratory

View shared research outputs
Researchain Logo
Decentralizing Knowledge