Raymond C. Highsmith
University of Mississippi
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Raymond C. Highsmith.
Monitoring and Modeling the Deepwater Horizon Oil Spill: A Record-Breaking Enterprise | 2013
Terry L. Wade; Stephen T. Sweet; Jose L. Sericano; Norman L. Guinasso; Arne‐R. A.‐R. Diercks; Raymond C. Highsmith; Vernon L. Asper; DongJoo Joung; Alan M. Shiller; Steven E. S. E. Lohrenz; Samantha B Joye
Monitoring and M A Record-Breakin Geophysical Mon Copyright 2011 b 10.1029/2011GM Surface and subsurface water samples were collected in the vicinity of the Deepwater Horizon (DWH) wellhead in the Gulf of Mexico. Samples were extracted with dichloromethane and analyzed for a toxic component, polycyclic aromatic hydrocarbons (PAHs), using total scanning fluorescence (TSF) and by gas chromatography/mass spectrometry (GC/MS). An aliquot of fresh, floating oil from a surface sample was used as a DWH oil reference standard. Twelve of 19 samples collected from 24 May 2010 to 6 June 2010 on the R/V Walton Smith cruise contained TSF maximum intensities above background (0.7 μg L 1 based on 1 L sample size). These 12 samples had total petroleum hydrocarbon (TPH) concentrations as measured by quantitative gas chromatography flame ionization detector (FID) ranging from 2 to 442 μg L . Quantitative GC/MS analysis of these 12 samples resulted in total PAH concentrations ranging from 0.01 to 59 μg L . Low molecular weight, more water-soluble naphthalene and alkylated naphthalene dominated the PAH composition patterns for 11 of the 12 water samples. Sample 12 exhibited substantially reduced concentrations of naphthalenes relative to other PAH compounds. The total PAH concentrations were positively correlated (R = 0.80) with the TSF maximum intensity (MI). TSF is a simple, rapid technique providing an accurate prediction of the amount of PAH present in a sample. TSFderived estimates of the relative contribution of PAH present in the oil provided evidence that PAH represented ~10% of the higher molecular weight TPH. The subsurface oil plume was confirmed by the analyses of discrete water samples for TSF, TPH, and PAH.
oceans conference | 2010
A.-R. Diercks; Vernon L. Asper; Raymond C. Highsmith; M. Woolsey; Steven E. Lohrenz; K. McLetchie; A. S. Gossett; M. Lowe; DongJoo Joung; Luke McKay; Samantha B. Joye; Andreas Teske
In May 2010, the National Institute for Undersea Science and Technology (NIUST) had a 17-day research cruise aboard the UNOLS vessel R/V Pelican scheduled. NIUST is a partnership of the University of Mississippi, the University of Southern Mississippi and NOAA. Before sailing, the Deepwater Horizon oil platform burned and sank, resulting in an uncontrolled oil spill at a depth of 5000 ft at Mississippi Canyon Block 252. Subsequently, the decision was made to abort the planned hydrate and ship wreck research in favor of an oil spill response. The primary goals of the redefined cruise were to acquire baseline and early impact data for seafloor sediments and subsurface distribution of oil and gas hydrates as close as possible in time and space to the origin of the oil spill. Investigating an oil spill nearly a mile deep in the ocean presents special benthic sampling and subsurface oil detection challenges. NIUSTs AUVs were unloaded from the ship and a larger main winch installed to allow operation of a large box corer for collecting sediment samples in water depths up to 2000 m. During the first five-day leg of the cruise, a total of 28 box cores were collected. The Pelican returned to port (Cocodrie, LA) to drop off sediment and water samples for immediate analyses, and to take on more sampling gear and supplies for the second leg of the cruise, including an Acrobat, a CDOM fluorometer, a Video Ray ROV, and a C02 sensor in addition to the already installed CTD Rosette with 02 sensor and light transmissometer. During Leg 2, box core samples were collected until weather prohibited safe operations. CTD stations were plotted to cover the area surrounding the wreck site and at various depths to cover the water column in order to map the subsurface water column structure and chemistry as baseline values for future investigations and especially to look for submerged oil and/or gas hydrates. Early in the water column sampling, a subsurface feature was discovered at 1200 to 1400 m depth. This layer was detected by three independent sensors, CDOM (colored dissolved organic matter) fluorometer, light transmissometer, and oxygen sensor. All three instruments responded in unison with greater fluorescence and beam attenuation and decreased 02 concentration. These signals were first observed at a station 5 miles from the accident site. Second and third station measurements, exactly half the distance to the spill site from the previous one, at 2.5 miles, and at 1.25 miles, showed the same signal but with significantly greater magnitude. Following this discovery, the sampling plan for the remaining days of the cruise was changed to map the newly discovered feature. This paper will discuss methods, pursuit of leads, gear and instrumentation utilized, resulting in the initial discovery of deep hydrocarbon plume features resulting from the uniquely deep oil spill.
Geophysical Research Letters | 2010
A.-R. Diercks; Raymond C. Highsmith; Vernon L. Asper; DongJoo Joung; Zhengzhen Zhou; Laodong Guo; Alan M. Shiller; Samantha B. Joye; Andreas Teske; Norman L. Guinasso; Terry L. Wade; Steven E. Lohrenz
Deep-sea Research Part Ii-topical Studies in Oceanography | 2016
Tingting Yang; Lisa M Nigro; Tony Gutierrez; Lindsay D’Ambrosio; Samantha B. Joye; Raymond C. Highsmith; Andreas Teske
Deep-sea Research Part Ii-topical Studies in Oceanography | 2007
Kenneth O. Coyle; Bodil A. Bluhm; Brenda Konar; Arny L. Blanchard; Raymond C. Highsmith
Deep-sea Research Part Ii-topical Studies in Oceanography | 2007
Kenneth O. Coyle; Brenda Konar; Arny L. Blanchard; Raymond C. Highsmith; JoLynn Carroll; Michael L. Carroll; Stanislav G. Denisenko; B.I. Sirenko
Deep-sea Research Part Ii-topical Studies in Oceanography | 2007
Bodil A. Bluhm; Kenneth O. Coyle; Brenda Konar; Raymond C. Highsmith
Archive | 2007
Raymond C. Highsmith; Kenneth O. Coyle; Bodil A. Bluhm; Brenda Konar
Geophysical Research Letters | 2010
A.-R. Diercks; Raymond C. Highsmith; Vernon L. Asper; DongJoo Joung; Zhengzhen Zhou; Laodong Guo; Alan M. Shiller; Samantha B. Joye; Andreas Teske; Norman L. Guinasso; Terry L. Wade; Steven E. Lohrenz
Deep-sea Research Part Ii-topical Studies in Oceanography | 2016
A. Conti; M. D’Emidio; Leonardo Macelloni; Carol Lutken; Vernon A. Asper; M. Woolsey; R. Jarnagin; Arne Diercks; Raymond C. Highsmith