Rehana Rashid
COMSATS Institute of Information Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Rehana Rashid.
Oxidative Medicine and Cellular Longevity | 2017
Ghulam Murtaza; Abida Kalsoom Khan; Rehana Rashid; Saiqa Muneer; Syed Muhammad Farid Hasan; Jianxin Chen
Several pathologies such as neurodegeneration and cancer are associated with aging, which is affected by many genetic and environmental factors. Healthy aging conceives human longevity, possibly due to carrying the defensive genes. For instance, FOXO (forkhead box O) genes determine human longevity. FOXO transcription factors are involved in the regulation of longevity phenomenon via insulin and insulin-like growth factor signaling. Only one FOXO gene (FOXO DAF-16) exists in invertebrates, while four FOXO genes, that is, FOXO1, FOXO3, FOXO4, and FOXO6 are found in mammals. These four transcription factors are involved in the multiple cellular pathways, which regulate growth, stress resistance, metabolism, cellular differentiation, and apoptosis in mammals. However, the accurate mode of longevity by FOXO factors is unclear until now. This article describes briefly the existing knowledge that is related to the role of FOXO factors in human longevity.
Oxidative Medicine and Cellular Longevity | 2017
Abida Kalsoom Khan; Ain Us Saba; Shamyla Nawazish; Fahad Akhtar; Rehana Rashid; Sadullah Mir; Bushra Nasir; Furqan Iqbal; Samina Afzal; Fahad Pervaiz; Ghulam Murtaza
Over the past few years, considerable attention has been focused on carrageenan based bionanocomposites due to their multifaceted properties like biodegradability, biocompatibility, and nontoxicity. Moreover, these composites can be tailored according to the desired purpose by using different nanofillers. The role of ferromagnetic nanoparticles in drug delivery is also discussed here in detail. Moreover, this article also presents a short review of recent research on the different types of the carrageenan based bionanocomposites and applications.
Pharmaceutical Biology | 2016
Ghulam Abbas; Ahmed Al-Harrasi; Hidayat Hussain; Javid Hussain; Rehana Rashid; M. Iqbal Choudhary
Abstract Context: During diabetes mellitus, non-enzymatic reaction between amino groups of protein and carbonyl of reducing sugars (Millard reaction) is responsible for the major diabetic complications. Various efforts have been made to influence the process of protein glycation. Objectives: This review article provides an extensive survey of various studies published in scientific literature to understand the process of protein glycation and its measurement. Moreover, evaluation and identification of potential inhibitors (antiglycation agents) of protein glycation from natural and synthetic sources and their mechanism of action in vitro and in vivo are also addressed. Method: In this review article, the mechanism involved in the formation of advanced glycation end products (AGEs) is discussed, while in second and third parts, promising antiglycation agents of natural and synthetic sources have been reviewed, respectively. Finally, in vivo studies have been addressed. This review is mainly compiled from important databases such as Science, Direct, Chemical Abstracts, SciFinder, and PubMed. Results: During the last two decades, various attempts have been made to inhibit the process of protein glycation. New potent inhibitors of protein glycation belonging to different classes such as flavonoids, alkaloids, terpenes, benzenediol Schiff bases, substituted indol, and thio compounds have been identified. Conclusion: Antiglycation therapy will be an effective strategy in future to prevent the formation of AGEs for the management of late diabetic complications Current review article highlighted various compounds of natural and synthetic origins identified previously to inhibit the protein glycation and formation of AGEs in vitro and in vivo.
Journal of Polymer Engineering | 2017
Sadullah Mir; Bisma Asghar; Abida Kalsoom Khan; Rehana Rashid; Ahson Jabbar Shaikh; Rafaqat Ali Khan; Ghulam Murtaza
Abstract The objective of this study was to prepare linear low density polyethylene (LLDPE)/chitosan/closite nanocomposites by using various concentrations of LLDPE, chitosan, and closite clay mineral. The nanocomposites were then characterized for their thermal, mechanical, and rheological properties by using different analytical techniques including thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), rheological characterization, tensile strength study, and scanning electron microscopy. The TGA demonstrated that crosslinked composites are thermally more stable than non-crosslinked composites. The DSC stated that the percentage crystallinity of crosslinked composites is lower than the non-crosslinked composites. It is also observed that the increasing quantity of chitosan and closite also reduces the percentage crystallinity of the prepared nanocomposites. Rheological characterization revealed that, crosslinked composites are viscoelastic in nature and have high complex viscosities (η*) and high dynamic shear storage modulus (G′), while non-crosslinked composites showed high dynamic shear loss modulus (G″). Tensile strength of crosslinked composites was much higher than non-crosslinked composites, however elongation at break (Eb) values of non-crosslinked composites are higher than crosslinked composites. The scanning electron microscopy displayed strong adhesion between matrix-filler-interphase in crosslinked composites, while some gaps were also observed in non-crosslinked composites. As a conclusion, chitosan, closite clay, and the LLDPE based nanocomposites with improved thermal, mechanical, and rheological properties can be successfully prepared by employing a peroxide-initiated melt compounding technique.
BioMed Research International | 2017
Rehana Rashid; Abida Kalsoom Khan; Ihsan Ul Haq; Sadullah Mir; Sadaf Mehmood; Yi Lu; Ghulam Murtaza
The present study is focused on the assessment of the medicinal therapeutic potential extracts of H. rosea to investigate their pharmacological implications based upon science proofs. The antioxidant activity of fraction of H. rosea, namely, n-hexane (HR-1), ethyl acetate (HR-2), chloroform (HR-3), and n-butanol (HR-4), was performed by using the DPPH radical scavenging method. The cytotoxicity and enzyme inhibition assessment were also performed. All the extracts showed significant antioxidant, antibacterial, and protein kinase inhibition but none of the extracts exhibited α-amylase inhibition activity. The chloroform extract HR-3 may block a kinase receptor from binding to ATP; the lead molecule will be isolated, which may stop cancerous cell growth and demotion of cell division. It is predicted that ethyl acetate, chloroform, and n-butanol extracts of H. rosea contain polyphenolics, flavonoids, and alkaloids that are biologically effective candidates exhibiting significant cytotoxicity, antioxidant, and antimicrobial activities. They may control oxidative damage in the body tissues and act as potential antidiabetic and anticancer agents. These studies will also be helpful for future drug designing and drug development research.
Anais Da Academia Brasileira De Ciencias | 2016
Muhammad Ubaid; Sadaf Ilyas; Sadullah Mir; Abida Kalsoom Khan; Rehana Rashid; Muhammad Z.U. Khan; Zainab G. Kanwal; Ahmad Nawaz; Amna Shah; Ghulam Murtaza
The aim of present study was to enhance topical permeation of clotrimazole gel preparation by using various permeability enhancers such as coconut oil, pistachio oil and sodium lauryl sulphate (SLS). Clotrimazole gel preparations were prepared and optimized by using three factor, five level central composite design. A second-order polynomial equation was generated in order to estimate the effect of independent variables i.e. coconut oil (X1), pistachio oil (X2) and sodium lauryl sulphate (X3) at various dependent variables i.e. flux (Y1), lag time (Y2), diffusion coefficient (Y3), permeability coefficient (Y4), and input rate (Y5) of clotrimazole gel formulations. Ex vivo skin permeation study was performed through rat skin by using modified Franz diffusion cell system. Optimized formulation F8 exhibited highest flux 2.17 µg/cm2/min, permeability coefficient 0.0019 cm/min and input rate 1.543 µg/cm2/min, along with moderate lag time 77.27 min and diffusion coefficient 0.063 cm2/min, which is further supported by anti-fungal activity that exhibited more prominent zone of inhibition against Candida albicans, Aspergillus niger and Mucor. Thus, it can be concluded that permeation of clotrimazole gel was enhanced by various combination of coconut oil, pistachio oil and sodium lauryl sulphate but optimized formulation F8 containing 0.4 ml pistachio oil, 0.8 ml coconut oil and 0.04 g of SLS exhibited more pronounced and promising effect through rat skin.
Acta Poloniae Pharmaceutica | 2015
Abida Kalsoom Khan; Rehana Rashid; Nighat Fatima; Sadaf Mahmood; Sadullah Mir; Sara Khan; Nyla Jabeen; Ghulam Murtaza
World applied sciences journal | 2009
Uzaira Iqbal; Humaira Qasim; Abida Kalsoom Khan; Rehana Rashid; Sadia Nasreen; Qaisar Mahmood; Jamil Khan
Journal of Food and Drug Analysis | 2017
Sadia Gilani; Sadullah Mir; Momina Masood; Abida Kalsoom Khan; Rehana Rashid; Saira Azhar; Akhtar Rasul; Muhammad Nadeem Ashraf; Muhammad Khurram Waqas; Ghulam Murtaza
Current Pharmaceutical Analysis | 2015
Rehana Rashid; Rabia Hameed; Muhammad Iqbal Choudhary; Farah Mukhtar; Abida Kalsoom Khan