Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Rodney D. Geisert is active.

Publication


Featured researches published by Rodney D. Geisert.


Cell and Tissue Research | 2012

Interaction of the conceptus and endometrium to establish pregnancy in mammals: role of interleukin 1β.

Rodney D. Geisert; Asgerally T. Fazleabas; Mathew Lucy; Daniel J. Mathew

Implantation and the establishment of pregnancy in mammals involves an intricate interplay of hormones, cytokines, growth factors, proteins, lipids, ions and the extracellular matrix between the uterine epithelium, stroma, immune cells and the conceptus trophectoderm. The divergent nature of implantation in the mouse, human and pig provides not only an interesting contrast in the establishment of pregnancy and early embryonic development but also intriguing similarities with regard to early endometrial-conceptus signaling. An interesting pro-inflammatory cytokine expressed in a number of mammalian species during the period of implantation is interleukin-1β (IL1B). The presence of IL1B might be involved with immunotolerance at the maternal-placental interface and has been proposed as one of the mediators in placental viviparity. The production of IL1B and other proinflammatory cytokines might play a role in establishing pregnancy through modulation of the nuclear factor kappa-B (NFKB) system in a number of species. A model for the regulation of cellular progesterone receptor expression and NFKB activation for endometrial receptivity and conceptus attachment is continuing to evolve and is discussed in the present review.


Journal of animal science and biotechnology | 2014

Cytokines from the pig conceptus: roles in conceptus development in pigs

Rodney D. Geisert; M.C. Lucy; Jeffrey J. Whyte; Jason W. Ross; Daniel J. Mathew

Establishment of pregnancy in pigs involves maintaining progesterone secretion from the corpora lutea in addition to regulating a sensitive interplay between the maternal immune system and attachment of the rapidly expanding trophoblast for nutrient absorption. The peri-implantation period of rapid trophoblastic elongation followed by attachment to the maternal uterine endometrium is critical for establishing a sufficient placental-uterine interface for subsequent nutrient transport for fetal survival to term, but is also marked by the required conceptus release of factors involved with stimulating uterine secretion of histotroph and modulation of the maternal immune system. Many endometrial genes activated by the conceptus secretory factors stimulate a tightly controlled proinflammatory response within the uterus. A number of the cytokines released by the elongating conceptuses stimulate inducible transcription factors such as nuclear factor kappa B (NFKB) potentially regulating the maternal uterine proinflammatory and immune response. This review will establish the current knowledge for the role of conceptus cytokine production and release in early development and establishment of pregnancy in the pig.


Biology of Reproduction | 2011

Uterine Progesterone Receptor Expression, Conceptus Development, and Ovarian Function in Pigs Treated with RU 486 During Early Pregnancy

Daniel J. Mathew; Erin M. Sellner; J.C. Green; Carol S. Okamura; Lloyd L. Anderson; M.C. Lucy; Rodney D. Geisert

Establishment of pregnancy in the pig depends on down-regulation of progesterone receptor (PGR) in the uterine luminal and glandular epithelium during the first week after breeding. The present study evaluated the regulation of endometrial PGR by progesterone and the possible role of endometrial tumor necrosis factor (ligand) superfamily member 11 (TNFSF11) and nuclear factor-kappa B (NFKB) activation in PGR expression. Mature, cycling gilts were inseminated (Day 0) and assigned to either untreated control (n = 9) or one of two treatments that employed RU 486 to block progesterone action either before (treatment 1 [T1]) or after (treatment 2 [T2]) the initiation of PGR down-regulation. The T1 gilts were treated with RU 486 (400 mg/day) on Days 3–5 of pregnancy (n = 9), and T2 gilts were treated with RU 486 on Days 6 and 7 of pregnancy (n = 9). Uteri and ovaries were collected on Day 8 or 12 of gestation. The diameter of the conceptuses in T1 gilts was approximately half that in controls by Day 8, and normal conceptuses were not collected from any T1 gilts on Day 12. Endometrial PGR mRNA was more abundant in T1 and T2 gilts compared with control gilts. The PGR-B protein decreased from Day 8 to Day 12 in the luminal epithelium and, to some extent, in superficial glandular epithelium in control and T2 gilts. In T1 gilts, the PGR-B protein remained elevated (i.e., failed to undergo down-regulation) on Day 12. Blocking PGR action early in the cycle (i.e., on or before Day 5), therefore, prevented normal conceptus development, caused elevated PGR mRNA, and prevented the decrease in PGR protein that typically occurs in pigs. We could not confirm a role for NFKB activation in PGR down-regulation, because pigs with extreme differences in PGR and TNFSF11 expression (T1 and controls) had similar NFKB activation on Day 8. Activated NFKB within the luminal epithelium and glandular epithelium (both superficial and deep) was observed in T2 and control pigs on Day 12 when elongating conceptuses (presumably releasing interleukin 1 beta to activate NFKB) were recovered. Gilts treated with RU 486 had greater ovarian follicular growth and greater plasma estradiol concentrations. We conclude that the mechanisms controlling PGR down-regulation are progesterone-dependent and occur between Day 3 and Day 6 of pregnancy. NFKB activation did not appear to have a role in PGR down-regulation within the period that we studied. Blocking progesterone action after Day 6 did not reverse the process of PGR down-regulation, nor did it appear to affect the development of conceptuses collected on Day 12.


Biology of Reproduction | 2015

Activation of the Transcription Factor Nuclear Factor-Kappa B in Uterine Luminal Epithelial Cells by Interleukin 1 Beta 2: A Novel Interleukin 1 Expressed by the Elongating Pig Conceptus

Daniel J. Mathew; E.M. Newsom; Jennifer M. Guyton; Christopher K. Tuggle; Rodney D. Geisert; M.C. Lucy

ABSTRACT Conceptus mortality is greatest in mammals during the peri-implantation period, a time when conceptuses appose and attach to the uterine surface epithelium while releasing proinflammatory molecules. Interleukin 1 beta (IL1B), a master proinflammatory cytokine, is released by the primate, rodent, and pig blastocyst during the peri-implantation period and is believed to be essential for establishment of pregnancy. The gene encoding IL1B has duplicated in the pig, resulting in a novel gene. Preliminary observations indicate that the novel IL1B is specifically expressed by pig conceptuses during the peri-implantation period. To verify this, IL1B was cloned from mRNA isolated from Day 12 pig conceptuses and compared with IL1B cloned from mRNA isolated from pig peripheral blood leukocytes (PBLs). The pig conceptuses, but not the PBLs, expressed a novel IL1B, referred to here as interleukin 1 beta 2 (IL1B2). Porcine endometrium was treated with recombinant porcine interleukin 1 beta 1 (IL1B1), the prototypical cytokine, and IL1B2 proteins. Immunohistochemistry and real-time RT-PCR were used to measure activation of nuclear factor-kappa B (NFKB) and NFKB-regulated transcripts, respectively, within the endometrium. Both IL1B1 and IL1B2 activated NFKB in the uterine luminal epithelium within 4 h. The NFKB activation and related gene expression, however, were lower in endometrium treated with IL1B2, suggesting that the conceptus-derived cytokine may have reduced activity within the uterus. In conclusion, the peri-implantation pig conceptus expresses a novel IL1B that can activate NFKB within the uterine surface epithelium, likely creating a proinflammatory microenvironment during establishment of pregnancy in the pig.


Reproductive Biology and Endocrinology | 2010

Endometrial caspase 1 and interleukin-18 expression during the estrous cycle and peri-implantation period of porcine pregnancy and response to early exogenous estrogen administration

Morgan D. Ashworth; Jason W. Ross; Daniel R. Stein; Frank J. White; Udaya DeSilva; Rodney D. Geisert

BackgroundThe role for endometrial secretion of cytokines during the establishment of pregnancy in a number of mammals is well established. The current study determined endometrial expression of caspase 1 (CASP1) and interleukin-18 (IL18) during the estrous cycle and early pregnancy, and following early estrogen administration, which induces conceptus loss during early development in pigs.MethodsGilts were hysterectomized on either D 0, 5, 10, 12, 15 and 18 of the estrous cycle, or D 10, 12, 15 or 18 of pregnancy. The abundance of endometrial CASP1 mRNA was unaffected by day of the estrous cycle, however there was a 6 and 10-fold increase in expression on D 15 and 18 of pregnancy. Endometrial expression of IL18 mRNA increased 5-fold between D 10 to 18 in cyclic and pregnant gilts. Total recoverable IL18 in uterine flushings was greater in pregnant compared to cyclic gilts on D 15 and 18.In the second experiment, mated gilts were treated with either corn oil (CO) or estrogen (E) on D 9 and 10 and hysterectomized on either D 10, 12, 13, 15 or 17 of pregnancy. The current study localizes the presence of CASP1 to the epithelial layer of the endometrium for the first time. Further, a day × treatment interaction was detected for endometrial CASP1 mRNA and protein abundance as E stimulated an earlier increase on D 13 compared to CO gilts. Although IL18 mRNA expression remained unaltered from the E treatment, protein abundance was significantly attenuated on D 15 and 18 in response to E treatment.ConclusionsEndometrial expression of CASP1 and IL18 is associated with establishment of pregnancy in pigs. Alteration of CASP1 and IL18 following premature exposure of the uterus to estrogen during early pregnancy may contribute to conceptus loss between Days 15 to 18 of pregnancy.


Animal Reproduction Science | 2010

Endometrial gene expression of acute phase extracellular matrix components following estrogen disruption of pregnancy in pigs

Morgan D. Ashworth; Jason W. Ross; Daniel R. Stein; Frank J. White; Rodney D. Geisert

In pigs, administration of estrogen to gilts on Days 9 and 10 of pregnancy causes conceptus fragmentation and death between Days 15 and 18 of gestation. Conceptus degeneration is associated with breakdown of the microvilli surface glycocalyx on the lumenal epithelium (LE). We previously identified endometrial expression of inter-α-trypsin inhibitor (ITI) and hyaluronic acid (HA), which are key components of extracellular matrix (ECM), during the period of conceptus attachment to the uterine surface in the pig. Tumor necrosis factor-α-inducible protein-6 (TNFAIP6) serves as a linker for ECM expansion and is stimulated by prostaglandin E (PGE). We hypothesized that early estrogen administration alters the normal ECM components forming glycocalyx on the LE. Bred gilts (4 gilts/trt/day) were treated with either 5mg estradiol cypionate (E) or corn oil (CO) on Days 9 and 10 of gestation. The uterus was surgically removed on either Days 10, 12, 13, 15 and 17 of gestation and endometrial tissue snap frozen in liquid nitrogen. Endometrial tumor necrosis factor-α (TNF), TNFAIP6, interleukin 6 (IL6), and inter-α-trypsin inhibitor heavy chains (ITIH) were detected during early pregnancy thereby indicating all components for maintenance of the extracellular glycocalyx are present in the endometrium of pigs. However, only gene expression of ITIH2 was suppressed by E-treatment. TNFAIP6 protein was detected across all days of gestation but was not affected by E-treatment. The present study demonstrates that while the pig endometrium expresses key components of ECM only ITIH2 gene expression was altered by E-treatment. A decrease in ITIH2 could lead to the possible loss of the uterine glycocalyx leading to conceptus degeneration; however, other factors may be involved with the loss of glycocalyx during implantation in the pig following E-treatment.


Molecular Reproduction and Development | 2017

Rapid conceptus elongation in the pig: An interleukin 1 beta 2 and estrogen regulated phenomenon

Rodney D. Geisert; Jeffrey J. Whyte; Ashley E. Meyer; Daniel J. Mathew; María Raquel Juárez; M.C. Lucy; Randall S. Prather; Thomas E. Spencer

Establishment and maintenance of pregnancy in the pig involves activating many physiological, cellular, and molecular signaling pathways between the developing conceptus and hormonally regulated maternal endometrium. Rapid elongation of the pig trophoblast allows for the establishment of sufficient placental surface area for the transport of nutrients to the fetus throughout pregnancy. Estrogens secreted by the conceptus during elongation act on uterine epithelia to induce secretion of uterine factors required for conceptus development and for preventing endocrine secretion of prostaglandin F2α, which would cause luteolysis. Thus, trophoblast expansion within the uterine lumen during early gestation is an essential process for implantation and maintenance of pregnancy in species with an epitheliochorial form of placentation. In the pig, rapid conceptus elongation involves the unique expression of interleukin‐1 beta 2 (IL1B2), which establishes pro‐inflammatory effects that may be tempered by the spatiotemporal secretion of estrogen from the conceptuses. The present review provides current information on pig conceptus remodeling and signaling via estrogen and IL1B2 pathways, as well as endometrial responses to those conceptus factors leading to establishment of pregnancy.


Reproductive Toxicology | 2012

Effects of aberrant estrogen on the endometrial transcriptional profile in pigs.

Morgan D. Ashworth; Jason W. Ross; Jerry W. Ritchey; Udaya DeSilva; Daniel R. Stein; Rodney D. Geisert; Frank J. White

Estrogen prepares the uterus for implantation and is highly conserved in mammals. However, administration of estrogen to pigs earlier than normal conceptus secretion is characterized by complete embryonic mortality by days 15-18. The objective of this study was to characterize the direct effects of early estrogen administration on uterine endometrial gene expression. The study evaluated the effects of estrogen when administered early on days 9 and 10 of the estrous cycle or day 11.5 which is the normal period of conceptus estrogen secretion in pigs. Uterine endometrium was removed either Day 13 or 15. Endometrial gene expression was evaluated using the GeneChip(®) Porcine Genome Array. Fifty-five candidate genes were successfully identified as differentially expressed due to aberrant estrogen exposure, and quantitative RT-PCR mRNA expression was supportive of the array data. These data provide insight into global uterine transcriptional changes associated with estrogen disruption of the endometrium.


Proceedings of the National Academy of Sciences of the United States of America | 2018

Inactivation of porcine interleukin-1β results in failure of rapid conceptus elongation

Jeffrey J. Whyte; Ashley E. Meyer; Lee D. Spate; Joshua A. Benne; Raissa Cecil; Melissa Samuel; Clifton N. Murphy; Randall S. Prather; Rodney D. Geisert

Significance Establishment of pregnancy in pigs requires that conceptuses produce estrogen to maintain functional corpora lutea throughout gestation and rapidly elongate to provide adequate surface area for nutrient flow through its epitheliochorial placenta. Early conceptus development in the pig is unique in that conceptuses rapidly elongate to long filamentous threads within 1 to 2 h. Conceptus IL1B2 gene and protein expression increase during the period of conceptus elongation. Using the CRISPR/Cas9 gene-editing system, we successfully knocked out pig conceptus IL1B2 expression and demonstrate that conceptus elongation was inhibited. This research provides insight into the biological role of IL1B2 in pig conceptus development and demonstrates the use of the CRISPR/Cas9 gene-editing system to evaluate genes during early conceptus development. Conceptus expansion throughout the uterus of mammalian species with a noninvasive epitheliochorial type of placentation is critical establishing an adequate uterine surface area for nutrient support during gestation. Pig conceptuses undergo a unique rapid morphological transformation to elongate into filamentous threads within 1 h, which provides the uterine surface to support development and maintain functional corpora lutea through the production of estrogen. Conceptus production of a unique interleukin 1β, IL1B2, temporally increases during the period of trophoblast remodeling during elongation. CRISPR/Cas9 gene editing was used to knock out pig conceptus IL1B2 expression and the secretion of IL1B2 during the time of conceptus elongation. Trophoblast elongation occurred on day 14 in wild-type (IL1B2+/+) conceptuses but did not occur in ILB2-null (IL1B2−/−) conceptuses. Although the morphological transition of IL1B2−/− conceptuses was inhibited, expression of a number of conceptus developmental genes was not altered. However, conceptus aromatase expression and estrogen secretion were decreased, indicating that IL1B2 may be involved in the spatiotemporal increase in conceptus estrogen synthesis needed for the establishment of pregnancy in the pig and may serve to regulate the proinflammatory response of endometrium to IL1B2 during conceptus elongation and attachment to the uterine surface.


Journal of Animal Science | 2018

Reproduction in domestic ruminants during the past 50 yr: discovery to application

M. F. Smith; Rodney D. Geisert; J.J. Parrish

The study of reproductive physiology in domestic ruminants has progressed from the whole animal to the molecular level in an amazingly short period of time. The volume of information on this subject is enormous; therefore, we have focused on domestic ruminants, with an emphasis on cattle. To date, artificial insemination (AI) is perhaps the most powerful technique that reproductive physiologists and geneticists have provided the livestock industry for genetic improvement. Early efforts to establish AI as a tool were initiated in Russia around 1899 and since that time major advances in methods of semen collection, evaluation of male fertility, cryopreservation of sperm, sex-sorted semen, and estrous cycle control have occurred. The preceding advances not only led to the widespread use of AI, but also contributed to our fundamental understanding of ovulation control, timing of insemination, gamete biology, and cryopreservation. In regards to anestrus, our understanding of the concept of neuroendocrine control of the pituitary gland and the role of steroid feedback led to the Gonadostat Theory, which proposes that onset of puberty is due to a decrease in the negative feedback of gonadal steroids over time. Subsequent studies in prepuberal and postpartum sheep and cattle established that a short luteal phase frequently precedes the first normal length cycle that is accompanied by estrous expression. This observation led to the common practice of treating prepuberal heifers and anestrous postpartum cows with a short-term progestin treatment (e.g., Controlled Internal Drug Release) to induce normal estrous cycles. In domestic ruminants, fertilization rate is high (85% to 95%); however, significant embryonic mortality before or around the time of maternal recognition of pregnancy (MRP) reduces the pregnancy rate to a single breeding. Significant effort has been directed at determining the time of MRP, the signal for MRP, as well as elucidating the physiological, cellular, and molecular dialogue between the conceptus and uterine environment. Advancements have now led us to the ability to edit the genome to alleviate disease and possibly improve production traits. In summary, major advancements in our understanding of reproductive biology have stemmed from efforts to establish the AI and embryo transfer technique and reduce the negative impact of anestrus and embryonic mortality in domestic ruminants.

Collaboration


Dive into the Rodney D. Geisert's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

M.C. Lucy

University of Missouri

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jason W. Ross

Oklahoma State University–Stillwater

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge