Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Roger J. Hajjar is active.

Publication


Featured researches published by Roger J. Hajjar.


Circulation | 2001

Akt Activation Preserves Cardiac Function and Prevents Injury After Transient Cardiac Ischemia In Vivo

Takashi Matsui; Jingzang Tao; Federica del Monte; Kyung-Han Lee; Ling Li; Michael H. Picard; Thomas Force; Thomas F. Franke; Roger J. Hajjar; Anthony Rosenzweig

Background—The serine-threonine kinase Akt is activated by several ligand-receptor systems previously shown to be cardioprotective. Akt activation reduces cardiomyocyte apoptosis in models of transient ischemia. Its role in cardiac dysfunction or infarction, however, remains unclear. Methods and Results—We examined the effects of a constitutively active Akt mutant (myr-Akt) in a rat model of cardiac ischemia-reperfusion injury. In vivo gene transfer of myr-Akt reduced infarct size by 64% and the number of apoptotic cells by 84% (P <0.005 for each). Ischemia-reperfusion injury decreased regional cardiac wall thickening as well as the maximal rate of left ventricular pressure rise and fall (+dP/dt and −dP/dt). Akt activation restored regional wall thickening and +dP/dt and −dP/dt to levels seen in sham-operated rats. To better understand this benefit, we examined the effects of myr-Akt on hypoxic cardiomyocyte dysfunction in vitro. myr-Akt prevented hypoxia-induced abnormalities in cardiomyocyte calcium transients and shortening. Akt activation also enhanced sarcolemmal expression of Glut-4 in vivo and increased glucose uptake in vitro to the level seen with insulin treatment. Conclusions—Akt activation exerts a powerful cardioprotective effect after transient ischemia that probably reflects its ability to both inhibit cardiomyocyte death and improve function of surviving cardiomyocytes. Akt may represent an important nodal target for therapy in ischemic and other heart disease.


Nature Medicine | 2007

Periostin induces proliferation of differentiated cardiomyocytes and promotes cardiac repair

Bernhard Kühn; Federica del Monte; Roger J. Hajjar; Yuh-Shin Chang; Djamel Lebeche; Shima Arab; Mark T Keating

Adult mammalian hearts respond to injury with scar formation and not with cardiomyocyte proliferation, the cellular basis of regeneration. Although cardiogenic progenitor cells may maintain myocardial turnover, they do not give rise to a robust regenerative response. Here we show that extracellular periostin induced reentry of differentiated mammalian cardiomyocytes into the cell cycle. Periostin stimulated mononucleated cardiomyocytes to go through the full mitotic cell cycle. Periostin activated αV, β1, β3 and β5 integrins located in the cardiomyocyte cell membrane. Activation of phosphatidylinositol-3-OH kinase was required for periostin-induced reentry of cardiomyocytes into the cell cycle and was sufficient for cell-cycle reentry in the absence of periostin. After myocardial infarction, periostin-induced cardiomyocyte cell-cycle reentry and mitosis were associated with improved ventricular remodeling and myocardial function, reduced fibrosis and infarct size, and increased angiogenesis. Thus, periostin and the pathway that it regulates may provide a target for innovative strategies to treat heart failure.


Circulation | 2011

Calcium Upregulation by Percutaneous Administration of Gene Therapy in Cardiac Disease (CUPID) A Phase 2 Trial of Intracoronary Gene Therapy of Sarcoplasmic Reticulum Ca2+-ATPase in Patients With Advanced Heart Failure

Mariell Jessup; Barry H. Greenberg; Donna Mancini; Thomas P. Cappola; Daniel F. Pauly; Brian E. Jaski; Alex Yaroshinsky; Krisztina Zsebo; Howard C. Dittrich; Roger J. Hajjar

Background— Adeno-associated virus type 1/sarcoplasmic reticulum Ca2+-ATPase was assessed in a randomized, double-blind, placebo-controlled, phase 2 study in patients with advanced heart failure. Methods and Results— Thirty-nine patients received intracoronary adeno-associated virus type 1/sarcoplasmic reticulum Ca2+-ATPase or placebo. Seven efficacy parameters were assessed in 4 domains: symptoms (New York Heart Association class, Minnesota Living With Heart Failure Questionnaire), functional status (6-minute walk test, peak maximum oxygen consumption), biomarker (N-terminal prohormone brain natriuretic peptide), and left ventricular function/remodeling (left ventricular ejection fraction, left ventricular end-systolic volume), plus clinical outcomes. The primary end point success criteria were prospectively defined as achieving efficacy at 6 months in the group-level (concordant improvement in 7 efficacy parameters and no clinically significant worsening in any parameter), individual-level (total score for predefined clinically meaningful changes in 7 efficacy parameters), or outcome end points (cardiovascular hospitalizations and time to terminal events). Efficacy in 1 analysis had to be associated with at least a positive trend in the other 2 analyses. This combination of requirements resulted in a probability of success by chance alone of 2.7%. The high-dose group versus placebo met the prespecified criteria for success at the group-level, individual-level, and outcome analyses (cardiovascular hospitalizations) at 6 months (confirmed at 12 months) and demonstrated improvement or stabilization in New York Heart Association class, Minnesota Living With Heart Failure Questionnaire, 6-minute walk test, peak maximum oxygen consumption, N-terminal prohormone brain natriuretic peptide levels, and left ventricular end-systolic volume. Significant increases in time to clinical events and decreased frequency of cardiovascular events were observed at 12 months (hazard ratio=0.12; P=0.003), and mean duration of cardiovascular hospitalizations over 12 months was substantially decreased (0.4 versus 4.5 days; P=0.05) on high-dose treatment versus placebo. There were no untoward safety findings. Conclusions— The Calcium Upregulation by Percutaneous Administration of Gene Therapy in Cardiac Disease (CUPID) study demonstrated safety and suggested benefit of adeno-associated virus type 1/sarcoplasmic reticulum Ca2+-ATPase in advanced heart failure, supporting larger confirmatory trials. Clinical Trial Registration— http://www.clinicaltrials.gov. Unique identifier: NCT00454818.Background— Adeno-associated virus type 1/sarcoplasmic reticulum Ca2+-ATPase was assessed in a randomized, double-blind, placebo-controlled, phase 2 study in patients with advanced heart failure. Methods and Results— Thirty-nine patients received intracoronary adeno-associated virus type 1/sarcoplasmic reticulum Ca2+-ATPase or placebo. Seven efficacy parameters were assessed in 4 domains: symptoms (New York Heart Association class, Minnesota Living With Heart Failure Questionnaire), functional status (6-minute walk test, peak maximum oxygen consumption), biomarker (N-terminal prohormone brain natriuretic peptide), and left ventricular function/remodeling (left ventricular ejection fraction, left ventricular end-systolic volume), plus clinical outcomes. The primary end point success criteria were prospectively defined as achieving efficacy at 6 months in the group-level (concordant improvement in 7 efficacy parameters and no clinically significant worsening in any parameter), individual-level (total score for predefined clinically meaningful changes in 7 efficacy parameters), or outcome end points (cardiovascular hospitalizations and time to terminal events). Efficacy in 1 analysis had to be associated with at least a positive trend in the other 2 analyses. This combination of requirements resulted in a probability of success by chance alone of 2.7%. The high-dose group versus placebo met the prespecified criteria for success at the group-level, individual-level, and outcome analyses (cardiovascular hospitalizations) at 6 months (confirmed at 12 months) and demonstrated improvement or stabilization in New York Heart Association class, Minnesota Living With Heart Failure Questionnaire, 6-minute walk test, peak maximum oxygen consumption, N-terminal prohormone brain natriuretic peptide levels, and left ventricular end-systolic volume. Significant increases in time to clinical events and decreased frequency of cardiovascular events were observed at 12 months (hazard ratio=0.12; P =0.003), and mean duration of cardiovascular hospitalizations over 12 months was substantially decreased (0.4 versus 4.5 days; P =0.05) on high-dose treatment versus placebo. There were no untoward safety findings. Conclusions— The Calcium Upregulation by Percutaneous Administration of Gene Therapy in Cardiac Disease (CUPID) study demonstrated safety and suggested benefit of adeno-associated virus type 1/sarcoplasmic reticulum Ca2+-ATPase in advanced heart failure, supporting larger confirmatory trials. Clinical Trial Registration— . Unique identifier: [NCT00454818][1]. # Clinical Perspective {#article-title-37} [1]: /lookup/external-ref?link_type=CLINTRIALGOV&access_num=NCT00454818&atom=%2Fcirculationaha%2F124%2F3%2F304.atom


Circulation | 1999

Restoration of Contractile Function in Isolated Cardiomyocytes From Failing Human Hearts by Gene Transfer of SERCA2a

Federica del Monte; Sian E. Harding; Ulrich Schmidt; Takashi Matsui; Zhao Bin Kang; G. William Dec; Judith K. Gwathmey; Anthony Rosenzweig; Roger J. Hajjar

BACKGROUND Failing human myocardium is characterized by abnormal relaxation, a deficient sarcoplasmic reticulum (SR) Ca(2+) uptake, and a negative frequency response, which have all been related to a deficiency in the SR Ca(2+) ATPase (SERCA2a) pump. METHODS AND RESULTS To test the hypothesis that an increase in SERCA2a could improve contractile function in cardiomyocytes, we overexpressed SERCA2a in human ventricular myocytes from 10 patients with end-stage heart failure and examined intracellular Ca(2+) handling and contractile function. Overexpression of SERCA2a resulted in an increase in both protein expression and pump activity and induced a faster contraction velocity (26.7+/-6.7% versus 16.6+/-2.7% shortening per second, P<0.005) and enhanced relaxation velocity (32. 0+/-10.1% versus 15.1+/-2.4%, P<0.005). Diastolic Ca(2+) was decreased in failing cardiomyocytes overexpressing SERCA2a (270+/-26 versus 347+/-30 nmol/L, P<0.005), whereas systolic Ca(2+) was increased (601+/-38 versus 508+/-25 nmol/L, P<0.05). In addition, the frequency response was normalized in cardiomyocytes overexpressing SERCA2a. CONCLUSIONS These results support the premise that gene-based therapies and targeting of specific pathways in human heart failure may offer a new modality for the treatment of this disease.


Circulation | 2001

Differential activation of signal transduction pathways in human hearts with hypertrophy versus advanced heart failure.

Syed Haq; Gabriel Choukroun; Hae Lim; Kevin M. Tymitz; Federica del Monte; Judith K. Gwathmey; Luanda Grazette; Ashour Michael; Roger J. Hajjar; Thomas Force; Jeffery D. Molkentin

Background —Left ventricular failure is commonly preceded by a period of hypertrophy. Intriguingly, many of the signaling pathways that have been implicated in the regulation of hypertrophy, including the 3 mitogen-activated protein kinases (MAPKs: extracellular signal-regulated kinase, stress-activated protein kinase, and p38), protein phosphatase, calcineurin, and the protein kinase Akt and its target glycogen synthase kinase-3 (GSK-3), also regulate the apoptotic response. Methods and Results —To understand the mechanisms that might regulate the progression of heart failure, we analyzed the activity of these signaling pathways in the hearts of patients with advanced heart failure, patients with compensated cardiac hypertrophy, and normal subjects. In patients with hypertrophy, neither the MAPK nor the Akt/GSK-3 pathways were activated, and the dominant signaling pathway was calcineurin. In failing hearts, calcineurin activity was increased but less so than in the hypertrophied hearts, and all 3 MAPKs and Akt were activated (and, accordingly, GSK-3&bgr; was inhibited), irrespective of whether the underlying diagnosis was ischemic or idiopathic cardiomyopathy. Conclusions —In the failing heart, there is a clear prohypertrophic activity profile, likely occurring in response to increased systolic wall stress and neurohormonal mediators. However, with the activation of these hypertrophic pathways, potent proapoptotic and antiapoptotic signals may also be generated. Therapies directed at altering the balance of activity of these signaling pathways could potentially alter the progression of heart failure.


Science Translational Medicine | 2012

Patient-Specific Induced Pluripotent Stem Cells as a Model for Familial Dilated Cardiomyopathy

Ning Sun; Masayuki Yazawa; Jianwei Liu; Leng Han; Veronica Sanchez-Freire; Oscar J. Abilez; Enrique G. Navarrete; Shijun Hu; Wang L; Andrew Lee; Aleksandra Pavlovic; Shin Lin; Rui Chen; Roger J. Hajjar; Michael Snyder; Ricardo E. Dolmetsch; Manish J. Butte; Euan A. Ashley; Michael T. Longaker; Robert C. Robbins; Joseph C. Wu

Human induced pluripotent stem cells generated from patients with familial dilated cardiomyopathy model cardiovascular disease in these patients. iPSCs Make the Heart Beat Faster Mutations in genes expressed in the heart can cause dilated cardiomyopathy (DCM), a form of heart disease in which a weakened and enlarged heart is unable to pump sufficient blood for the body’s needs. DCM can lead to progressive heart failure that eventually requires heart transplantation. This disease has been challenging to study because cardiomyocytes from the hearts of DCM patients are difficult to obtain and do not survive long. Mouse models of DCM are established and have provided important clues about the disease mechanisms for DCM. However, the mouse heart is very different in physiology compared to the human heart; for example, the mouse heart rate is 10 times faster than that of human. In a new study, Sun et al. generated induced pluripotent stem cells (iPSCs) from skin cells of patients in a family with inherited DCM. This family carries a deleterious mutation in TNNT2, a gene that is expressed specifically in the heart and regulates cardiomyocyte contraction. Using iPSCs, the authors generated a large number of individual-specific cardiomyocytes carrying the specific TNNT2 mutation and analyzed their functional properties. Compared to cardiomyocytes derived from iPSCs of healthy controls in the same family, cardiomyocytes derived from iPSCs of DCM patients exhibited an increased heterogeneous myofilament organization, susceptibility to stress, compromised ability to regulate calcium flux, and decreased contraction force. These results suggest that the mutation in TNNT2 causes abnormalities in the cardiomyocytes and contributes to the development of DCM disease. Using these DCM iPSC–derived cardiomyocytes, the researchers also showed that several current treatments that clinically benefit DCM disease improved DCM cardiomyocyte function in culture. The current study shows that human iPSC-derived cardiomyocytes could provide an important platform to investigate the specific disease mechanisms of DCM as well as other inherited cardiovascular disorders and for screening new drugs for cardiovascular disease. Characterized by ventricular dilatation, systolic dysfunction, and progressive heart failure, dilated cardiomyopathy (DCM) is the most common form of cardiomyopathy in patients. DCM is the most common diagnosis leading to heart transplantation and places a significant burden on healthcare worldwide. The advent of induced pluripotent stem cells (iPSCs) offers an exceptional opportunity for creating disease-specific cellular models, investigating underlying mechanisms, and optimizing therapy. Here, we generated cardiomyocytes from iPSCs derived from patients in a DCM family carrying a point mutation (R173W) in the gene encoding sarcomeric protein cardiac troponin T. Compared to control healthy individuals in the same family cohort, cardiomyocytes derived from iPSCs from DCM patients exhibited altered regulation of calcium ion (Ca2+), decreased contractility, and abnormal distribution of sarcomeric α-actinin. When stimulated with a β-adrenergic agonist, DCM iPSC–derived cardiomyocytes showed characteristics of cellular stress such as reduced beating rates, compromised contraction, and a greater number of cells with abnormal sarcomeric α-actinin distribution. Treatment with β-adrenergic blockers or overexpression of sarcoplasmic reticulum Ca2+ adenosine triphosphatase (Serca2a) improved the function of iPSC-derived cardiomyocytes from DCM patients. Thus, iPSC-derived cardiomyocytes from DCM patients recapitulate to some extent the morphological and functional phenotypes of DCM and may serve as a useful platform for exploring disease mechanisms and for drug screening.


Journal of Cardiac Failure | 2009

Calcium Upregulation by Percutaneous Administration of Gene Therapy in Cardiac Disease (CUPID Trial), a First-in-Human Phase 1/2 Clinical Trial

Brian E. Jaski; Mariell Jessup; Donna Mancini; Thomas P. Cappola; Daniel F. Pauly; Barry H. Greenberg; Kenneth M. Borow; Howard C. Dittrich; Krisztina Zsebo; Roger J. Hajjar

BACKGROUND SERCA2a deficiency is commonly seen in advanced heart failure (HF). This study is designed to investigate safety and biological effects of enzyme replacement using gene transfer in patients with advanced HF. METHODS AND RESULTS A total of 9 patients with advanced HF (New York Heart Association [NYHA] Class III/IV, ejection fraction [EF] < or = 30%, maximal oxygen uptake [VO2 max] <16 mL.kg.min, with maximal pharmacological and device therapy) received a single intracoronary infusion of AAV1/SERCA2a in the open-label portion of this ongoing study. Doses administered ranged from 1.4 x 10(11) to 3 x 10(12) DNase resistant particles per patient. We present 6- to 12-month follow-up data for these patients. AAV1/SERCA2a demonstrated an acceptable safety profile in this advanced HF population. Of the 9 patients treated, several demonstrated improvements from baseline to month 6 across a number of parameters important in HF, including symptomatic (NYHA and Minnesota Living with Heart Failure Questionnaire, 5 patients), functional (6-minute walk test and VO2 max, 4 patients), biomarker (NT-ProBNP, 2 patients), and LV function/remodeling (EF and end-systolic volume, 5 patients). Of note, 2 patients who failed to improve had preexisting anti-AAV1 neutralizing antibodies. CONCLUSIONS Quantitative evidence of biological activity across a number of parameters important for assessing HF status could be detected in several patients without preexisting neutralizing antibodies in this open-label study, although the number of patients in each cohort is too small to conduct statistical analyses. These findings support the initiation of the Phase 2 double-blind, placebo-controlled portion of this study.


Proceedings of the National Academy of Sciences of the United States of America | 2002

Functional consequences of caspase activation in cardiac myocytes

Catherine Communal; Marius P. Sumandea; Pieter P. de Tombe; Jagat Narula; R. John Solaro; Roger J. Hajjar

Cardiomyocyte apoptosis is present in many cardiac disease states, including heart failure and ischemic heart disease. Apoptosis is associated with the activation of caspases that mediate the cleavage of vital and structural proteins. However, the functional contribution of apoptosis to these conditions is not known. Furthermore, in cardiac myocytes, apoptosis may not be complete, allowing the cells to persist for a prolonged period within the myocardium. Therefore, we examined whether caspase-3 cleaved cardiac myofibrillar proteins and, if so, whether it affects contractile function. The effects of caspase-3 were studied in vitro on individual components of the cardiac myofilament including α-actin, α-actinin, myosin heavy chain, myosin light chain 1/2, tropomyosin, cardiac troponins (T, I, C), and the trimeric troponin complex. Exposure of the myofibrillar protein (listed above) to caspase-3 for 4 h resulted in the cleavage of α-actin and α-actinin, but not myosin heavy chain, myosin light chain 1/2, and tropomyosin, into three fragments (30, 20, and 15 kDa) and one major fragment (45 kDa), respectively. When cTnT, cTnI, and cTnC were incubated individually with caspase-3, there was no detectable cleavage. However, when the recombinant troponin complex was exposed to caspase-3, cTnT was cleaved, resulting in fragments of 25 kDa. Furthermore, rat cardiac myofilaments exposed to caspase-3 exhibited similar patterns of myofibrillar protein cleavage. Treatment with the caspase inhibitor DEVD-CHO or z-VAD-fmk abolished the cleavage. Myofilaments, isolated from adult rat ventricular myocytes after induction of apoptotic pathway by using β-adrenergic stimulation, displayed a similar pattern of actin and TnT cleavage. Exposure of skinned fiber to caspase-3 decreased maximal Ca2+-activated force and myofibrillar ATPase activity. Our results indicate that caspase-3 cleaved myofibrillar proteins, resulting in an impaired force/Ca2+ relationship and myofibrillar ATPase activity. Induction of apoptosis in cardiac cells was associated with similar cleavage of myofilaments. Therefore, activation of apoptotic pathways may lead to contractile dysfunction before cell death.


Circulation | 2002

Titin Isoform Switch in Ischemic Human Heart Disease

Ciprian Neagoe; Michael Kulke; Federica del Monte; Judith K. Gwathmey; Pieter P. de Tombe; Roger J. Hajjar; Wolfgang A. Linke

Background—Ischemia-induced cardiomyopathy usually is accompanied by elevated left ventricular end-diastolic pressure, which follows from increased myocardial stiffness resulting from upregulated collagen expression. In addition to collagen, a main determinant of stiffness is titin, whose role in ischemia-induced left ventricular stiffening was studied here. Human heart sarcomeres coexpress 2 principal titin isoforms, a more compliant N2BA isoform and a stiffer N2B isoform. In comparison, normal rat hearts express almost no N2BA titin. Methods and Results—Gel electrophoresis and immunoblotting were used to determine the N2BA-to-N2B titin isoform ratio in nonischemic human hearts and nonnecrotic left ventricle of coronary artery disease (CAD) patients. The average N2BA-to-N2B ratio was 47:53 in severely diseased CAD transplanted hearts and 32:68 in nonischemic transplants. In normal donor hearts and donor hearts with CAD background, relative N2BA titin content was ≈30%. The titin isoform shift in CAD transplant hearts coincided with a high degree of modifications of cardiac troponin I, probably indicating increased preload. Immunofluorescence microscopy on CAD transplant specimens showed a regular cross-striated arrangement of titin and increased expression of collagen and desmin. Force measurements on isolated myofibrils revealed reduced passive-tension levels in sarcomeres of CAD hearts with high left ventricular end-diastolic pressure compared with sarcomeres of normal hearts. In a rat model of ischemia-induced myocardial infarction (left anterior descending coronary artery ligature), 43% of animals, but only 14% of sham-operated animals, showed a distinct N2BA titin band on gels. Conclusions—A titin isoform switch was observed in chronically ischemic human hearts showing extensive remodeling, which necessitated cardiac transplantation. The shift, also confirmed in rat hearts, caused reduced titin-derived myofibrillar stiffness. Titin modifications in long-term ischemic myocardium could impair the ability of the heart to use the Frank-Starling mechanism.


Circulation | 2004

In Vivo Tracking of Stem Cells for Clinical Trials in Cardiovascular Disease

John V. Frangioni; Roger J. Hajjar

Various stem cells hold promise for the treatment of human cardiovascular disease. Regardless of stem cell origin, future clinical trials will require that the location and number of such cells be tracked in vivo, over long periods of time. The problem of tracking small numbers of cells in the body is a difficult one, and an optimal solution does not yet exist. We review the many contrast agents and detectors that have been proposed for stem cell tracking during clinical trials, define the characteristics of an ideal imaging technology, and suggest future directions for research.

Collaboration


Dive into the Roger J. Hajjar's collaboration.

Top Co-Authors

Avatar

Kiyotake Ishikawa

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

Federica del Monte

Beth Israel Deaconess Medical Center

View shared research outputs
Top Co-Authors

Avatar

Djamel Lebeche

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

Yoshiaki Kawase

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

Dongtak Jeong

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

Valentin Fuster

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kenneth Fish

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

Lahouaria Hadri

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

Elie R. Chemaly

Icahn School of Medicine at Mount Sinai

View shared research outputs
Researchain Logo
Decentralizing Knowledge