Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Roslyn N. Brown is active.

Publication


Featured researches published by Roslyn N. Brown.


Environmental Microbiology | 2011

Extracellular Polymeric Substances from Shewanella sp. HRCR-1 Biofilms: Characterization by Infrared Spectroscopy and Proteomics

Bin Cao; Liang Shi; Roslyn N. Brown; Yijia Xiong; Jim K. Fredrickson; Margaret F. Romine; Matthew J. Marshall; Mary S. Lipton; Haluk Beyenal

The composition of extracellular polymeric substances (EPS) from Shewanella sp. HRCR-1 biofilms was investigated using infrared spectroscopy and proteomics to provide insight into potential ecophysiological functions and redox activity of the EPS. Both bound and loosely associated EPS were extracted from Shewanella sp. HRCR-1 biofilms prepared using a hollow-fibre membrane biofilm reactor. Fourier transform infrared spectra revealed the presence of proteins, polysaccharides, nucleic acids, membrane lipids and fatty acids in the EPS fractions. Using a global proteomic approach, a total of 58 extracellular and outer membrane proteins were identified in the EPS. These included homologues of multiple Shewanella oneidensis MR-1 proteins that potentially contribute to key physiological biofilm processes, such as biofilm-promoting protein BpfA, surface-associated serine protease, nucleotidases (CpdB and UshA), an extracellular lipase, and oligopeptidases (PtrB and a M13 family oligopeptidase lipoprotein). In addition, 20 redox proteins were found in extracted EPS. Among the detected redox proteins were the homologues of two S. oneidensis MR-1 c-type cytochromes, MtrC and OmcA, which have been implicated in extracellular electron transfer. Given their detection in the EPS of Shewanella sp. HRCR-1 biofilms, c-type cytochromes may contribute to the possible redox activity of the biofilm matrix and play important roles in extracellular electron transfer reactions.


Infection and Immunity | 2011

Discovery of Novel Secreted Virulence Factors from Salmonella enterica Serovar Typhimurium by Proteomic Analysis of Culture Supernatants

George S. Niemann; Roslyn N. Brown; Jean K. Gustin; Afke Stufkens; Afshan S. Shaikh-Kidwai; Jie Li; Jason E. McDermott; Heather M. Brewer; Athena A. Schepmoes; Richard D. Smith; Joshua N. Adkins; Fred Heffron

ABSTRACT Salmonella enterica serovar Typhimurium is a leading cause of acute gastroenteritis throughout the world. This pathogen has two type III secretion systems (TTSS) encoded in Salmonella pathogenicity islands 1 and 2 (SPI-1 and SPI-2) that deliver virulence factors (effectors) to the host cell cytoplasm and are required for virulence. While many effectors have been identified and at least partially characterized, the full repertoire of effectors has not been catalogued. In this proteomic study, we identified effector proteins secreted into defined minimal medium designed to induce expression of the SPI-2 TTSS and its effectors. We compared the secretomes of the parent strain to those of strains missing essential (ssaK::cat) or regulatory (ΔssaL) components of the SPI-2 TTSS. We identified 20 known SPI-2 effectors. Excluding the translocon components SseBCD, all SPI-2 effectors were biased for identification in the ΔssaL mutant, substantiating the regulatory role of SsaL in TTS. To identify novel effector proteins, we coupled our secretome data with a machine learning algorithm (SIEVE, SVM-based identification and evaluation of virulence effectors) and selected 12 candidate proteins for further characterization. Using CyaA′ reporter fusions, we identified six novel type III effectors and two additional proteins that were secreted into J774 macrophages independently of a TTSS. To assess their roles in virulence, we constructed nonpolar deletions and performed a competitive index analysis from intraperitoneally infected 129/SvJ mice. Six mutants were significantly attenuated for spleen colonization. Our results also suggest that non-type III secretion mechanisms are required for full Salmonella virulence.


Applied and Environmental Microbiology | 2009

USER Friendly Cloning Coupled with Chitin-Based Natural Transformation Enables Rapid Mutagenesis of Vibrio vulnificus

Paul A. Gulig; Matthew S. Tucker; Patrick C. Thiaville; Jennifer L. Joseph; Roslyn N. Brown

ABSTRACT Vibrio vulnificus is a bacterial contaminant of shellfish and causes highly lethal sepsis and destructive wound infections. A definitive identification of virulence factors using the molecular version of Kochs postulates has been hindered because of difficulties in performing molecular genetic analysis of this opportunistic pathogen. For example, conjugation is required to introduce plasmid DNA, and allelic exchange suicide vectors that rely on sucrose sensitivity for counterselection are not efficient. We therefore incorporated USER friendly cloning techniques into pCVD442-based allelic exchange suicide vectors and other expression vectors to enable the rapid and efficient capture of PCR amplicons. Upstream and downstream DNA sequences flanking genes targeted for deletion were cloned together in a single step. Based on results from Vibrio cholerae, we determined that V. vulnificus becomes naturally transformable with linear DNA during growth on chitin in the form of crab shells. By combining USER friendly cloning and chitin-based transformation, we rapidly and efficiently produced targeted deletions in V. vulnificus, bypassing the need for two-step, suicide vector-mediated allelic exchange. These methods were used to examine the roles of two flagellin loci (flaCDE and flaFBA), the motAB genes, and the cheY-3 gene in motility and to create deletions of rtxC, rtxA1, and fadR. Additionally, chitin-based transformation was useful in moving antibiotic resistance-labeled mutations between V. vulnificus strains by simply coculturing the strains on crab shells. The methods and genetic tools that we developed should be of general use to those performing molecular genetic analysis and manipulation of other gram-negative bacteria.


PLOS Computational Biology | 2012

Genome-Scale Modeling of Light-Driven Reductant Partitioning and Carbon Fluxes in Diazotrophic Unicellular Cyanobacterium Cyanothece sp. ATCC 51142

Trang T. Vu; Sergey M. Stolyar; Grigoriy E. Pinchuk; Eric A. Hill; Leo A. Kucek; Roslyn N. Brown; Mary S. Lipton; Andrei L. Osterman; Jim K. Fredrickson; Allan Konopka; Alexander S. Beliaev; Jennifer L. Reed

Genome-scale metabolic models have proven useful for answering fundamental questions about metabolic capabilities of a variety of microorganisms, as well as informing their metabolic engineering. However, only a few models are available for oxygenic photosynthetic microorganisms, particularly in cyanobacteria in which photosynthetic and respiratory electron transport chains (ETC) share components. We addressed the complexity of cyanobacterial ETC by developing a genome-scale model for the diazotrophic cyanobacterium, Cyanothece sp. ATCC 51142. The resulting metabolic reconstruction, iCce806, consists of 806 genes associated with 667 metabolic reactions and includes a detailed representation of the ETC and a biomass equation based on experimental measurements. Both computational and experimental approaches were used to investigate light-driven metabolism in Cyanothece sp. ATCC 51142, with a particular focus on reductant production and partitioning within the ETC. The simulation results suggest that growth and metabolic flux distributions are substantially impacted by the relative amounts of light going into the individual photosystems. When growth is limited by the flux through photosystem I, terminal respiratory oxidases are predicted to be an important mechanism for removing excess reductant. Similarly, under photosystem II flux limitation, excess electron carriers must be removed via cyclic electron transport. Furthermore, in silico calculations were in good quantitative agreement with the measured growth rates whereas predictions of reaction usage were qualitatively consistent with protein and mRNA expression data, which we used to further improve the resolution of intracellular flux values.


Journal of Proteome Research | 2010

Mapping the Subcellular Proteome of Shewanella oneidensis MR-1 using Sarkosyl-Based Fractionation and LC−MS/MS Protein Identification

Roslyn N. Brown; Margaret F. Romine; Athena A. Schepmoes; Richard D. Smith; Mary S. Lipton

A simple and effective subcellular proteomic method for fractionation based on osmotic lysis, differential centrifugation, and Sarkosyl solubilization was applied to the Gram-negative bacterium Shewanella oneidensis to gain insight into its subcellular architecture. Global differences in bacterial cytoplasm, inner membrane, periplasm, and outer membrane protein fractions were observed by SDS PAGE and heme staining, and tryptic peptides were analyzed using high-resolution liquid chromatography-tandem mass spectrometry. Proteins predicted to be localized to each subcellular fraction were enriched approximately 2-fold (on average) in each fraction compared to crude cell lysates. In addition, the Sarkosyl solubilization method facilitated separation of the inner and outer membranes, making the procedure amenable for effective probing of the subcellular proteome of Gram-negative bacteria via liquid chromatography-tandem mass spectrometry. With 40% of the observable proteome represented, this study provides extensive information on both subcellular architecture and relative abundance of proteins in S. oneidensis and provides a foundation for future work on subcellular organization and protein-membrane interactions in other Gram-negative bacteria.


Mbio | 2012

Unexpected Diversity of Signal Peptides in Prokaryotes

Samuel H. Payne; Stefano Bonissone; Si Wu; Roslyn N. Brown; Dmitry N. Ivankov; Dmitrij Frishman; Ljiljana Paša-Tolić; Richard D. Smith; Pavel A. Pevzner

ABSTRACT Signal peptides are a cornerstone mechanism for cellular protein localization, yet until now experimental determination of signal peptides has come from only a narrow taxonomic sampling. As a result, the dominant view is that Sec-cleaved signal peptides in prokaryotes are defined by a canonical AxA motif. Although other residues are permitted in the motif, alanine is by far the most common. Here we broadly examine proteomics data to reveal the signal peptide sequences for 32 bacterial and archaeal organisms from nine phyla and demonstrate that this alanine preference is not universal. Discoveries include fundamentally distinct signal peptide motifs from Alphaproteobacteria, Spirochaetes, Thermotogae and Euryarchaeota. In these novel motifs, alanine is no longer the dominant residue but has been replaced in a different way for each taxon. Surprisingly, divergent motifs correlate with a proteome-wide reduction in alanine. Computational analyses of ~1,500 genomes reveal numerous major evolutionary clades which have replaced the canonical signal peptide sequence with novel motifs. IMPORTANCE This article replaces a widely held general model with a more detailed model describing phylogenetically correlated variation in motifs for Sec secretion. This article replaces a widely held general model with a more detailed model describing phylogenetically correlated variation in motifs for Sec secretion.


Journal of Bacteriology | 2008

Regulation of Fatty Acid Metabolism by FadR Is Essential for Vibrio vulnificus To Cause Infection of Mice

Roslyn N. Brown; Paul A. Gulig

The opportunistic bacterial pathogen Vibrio vulnificus causes severe wound infection and fatal septicemia. We used alkaline phosphatase insertion mutagenesis in a clinical isolate of V. vulnificus to find genes necessary for virulence, and we identified fadR, which encodes a regulator of fatty acid metabolism. The fadR::mini-Tn5Km2phoA mutant was highly attenuated in a subcutaneously inoculated iron dextran-treated mouse model of V. vulnificus disease, was hypersensitive to the fatty acid synthase inhibitor cerulenin, showed aberrant expression of fatty acid biosynthetic (fab) genes and fatty acid oxidative (fad) genes, produced smaller colonies on agar media, and grew slower in rich broth than did the wild-type parent. Deletion of fadR essentially recapitulated the phenotypes of the insertion mutant, and the DeltafadR mutation was complemented in trans with the wild-type gene. Further characterization of the DeltafadR mutant showed that it was not generally hypersensitive to envelope stresses but had decreased motility and showed an altered membrane lipid profile compared to that of the wild type. Supplementation of broth with the unsaturated fatty acid oleate restored wild-type growth in vitro, and infection with oleate in the inoculum increased the ability of the DeltafadR mutant to infect mice. We conclude that fadR and regulation of fatty acid metabolism are essential for V. vulnificus to be able to cause disease in mammalian hosts.


Journal of Proteome Research | 2010

Quantitative analysis of cell surface membrane proteins using membrane-impermeable chemical probe coupled with 18O labeling

Haizhen Zhang; Roslyn N. Brown; Wei Jun Qian; Matthew E. Monroe; Samuel O. Purvine; Ronald J. Moore; Marina A. Gritsenko; Liang Shi; Margaret F. Romine; James K. Fredrickson; Ljiljana Paša-Tolić; Richard D. Smith; Mary S. Lipton

We report a mass spectrometry-based strategy for quantitative analysis of cell surface membrane proteome changes. The strategy includes enrichment of surface membrane proteins using a membrane-impermeable chemical probe followed by stable isotope (18)O labeling and LC-MS analysis. We applied this strategy for enriching membrane proteins expressed by Shewanella oneidensis MR-1, a Gram-negative bacterium with known metal-reduction capability via extracellular electron transfer between outer membrane proteins and extracellular electron receptors. LC/MS/MS analysis resulted in the identification of about 400 proteins with 79% of them being predicted to be membrane localized. Quantitative aspects of the membrane enrichment were shown by peptide level (16)O and (18)O labeling of proteins from wild-type and mutant cells (generated from deletion of a type II secretion protein, GspD) prior to LC-MS analysis. Using a chemical probe labeled pure protein as an internal standard for normalization, the quantitative data revealed reduced abundances in Delta gspD mutant cells of many outer membrane proteins including the outer membrane c-type cytochromes OmcA and MtrC, in agreement with a previous report that these proteins are substrates of the type II secretion system.


Infection and Immunity | 2009

Roles of RseB, σE, and DegP in Virulence and Phase Variation of Colony Morphotype of Vibrio vulnificus

Roslyn N. Brown; Paul A. Gulig

ABSTRACT Vibrio vulnificus is an estuarine bacterium capable of causing serious and often fatal wound infections and primary septicemia. We used alkaline phosphatase insertion mutagenesis to identify genes necessary for the virulence of this pathogen. One mutant had an in-frame fusion of ′phoA to the gene encoding RseB, a periplasmic negative regulator of the alternative sigma factor σE. σE controls an extensive regulon involved in responding to cell envelope stresses. Colonies of the rseB mutant were less opaque than wild-type colonies and underwent phase variation between translucent and opaque morphologies. rseB mutants were attenuated for virulence in subcutaneously inoculated iron-dextran-treated mice. To obtain insight into the role of rseB and the extracytoplasmic stress response in V. vulnificus, mutants with defined mutations in rseB and two important members of the extracytoplasmic stress regulon, rpoE and degP, were constructed for analysis of virulence, colony morphology, and stress-associated phenotypes. Deletion of rseB caused reversible phase variation in the colony morphotype that was associated with extracellular polysaccharides. Translucent and transparent morphotype strains were attenuated for virulence. rpoE and degP deletion mutants were sensitive to membrane-perturbing agents and heat but were not significantly attenuated for V. vulnificus virulence in mice. These results reveal complex relationships between regulation of the extracytoplasmic stress response, exopolysaccharides, and the virulence of V. vulnificus.


PLOS ONE | 2013

Diverse secreted effectors are required for Salmonella persistence in a mouse infection model.

Afshan S. Kidwai; Ivy Mushamiri; George S. Niemann; Roslyn N. Brown; Joshua N. Adkins; Fred Heffron

Salmonella enterica serovar Typhimurium causes typhoid-like disease in mice and is a model of typhoid fever in humans. One of the hallmarks of typhoid is persistence, the ability of the bacteria to survive in the host weeks after infection. Virulence factors called effectors facilitate this process by direct transfer to the cytoplasm of infected cells thereby subverting cellular processes. Secretion of effectors to the cell cytoplasm takes place through multiple routes, including two separate type III secretion (T3SS) apparati as well as outer membrane vesicles. The two T3SS are encoded on separate pathogenicity islands, SPI-1 and -2, with SPI-1 more strongly associated with the intestinal phase of infection, and SPI-2 with the systemic phase. Both T3SS are required for persistence, but the effectors required have not been systematically evaluated. In this study, mutations in 48 described effectors were tested for persistence. We replaced each effector with a specific DNA barcode sequence by allelic exchange and co-infected with a wild-type reference to calculate the ratio of wild-type parent to mutant at different times after infection. The competitive index (CI) was determined by quantitative PCR in which primers that correspond to the barcode were used for amplification. Mutations in all but seven effectors reduced persistence demonstrating that most effectors were required. One exception was CigR, a recently discovered effector that is widely conserved throughout enteric bacteria. Deletion of cigR increased lethality, suggesting that it may be an anti-virulence factor. The fact that almost all Salmonella effectors are required for persistence argues against redundant functions. This is different from effector repertoires in other intracellular pathogens such as Legionella.

Collaboration


Dive into the Roslyn N. Brown's collaboration.

Top Co-Authors

Avatar

Joshua N. Adkins

Pacific Northwest National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mary S. Lipton

Pacific Northwest National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Liang Shi

Pacific Northwest National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Ljiljana Paša-Tolić

Environmental Molecular Sciences Laboratory

View shared research outputs
Top Co-Authors

Avatar

Matthew E. Monroe

Pacific Northwest National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Charles Ansong

Pacific Northwest National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Ernesto S. Nakayasu

Pacific Northwest National Laboratory

View shared research outputs
Researchain Logo
Decentralizing Knowledge