Ruizheng Shi
Central South University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ruizheng Shi.
Cardiovascular Research | 2011
Ruizheng Shi; Chang-Ping Hu; Qiong Yuan; Tianlun Yang; Jun Peng; Yuan-Jian Li; Yong-Ping Bai; Zehong Cao; Guangjie Cheng; Guo-Gang Zhang
AIMS Vascular peroxidase 1 (VPO1) is a newly identified haem-containing peroxidase that catalyses the oxidation of a variety of substrates by hydrogen peroxide (H(2)O(2)). Considering the well-defined effects of H(2)O(2) on the vascular remodelling during hypertension, and that VPO1 can utilize H(2)O(2) generated from co-expressed NADPH oxidases to catalyse peroxidative reactions, the aims of this study were to determine the potential role of VPO1 in vascular remodelling during hypertension. METHODS AND RESULTS The vascular morphology and the expression of VPO1 in arterial tissues of spontaneously hypertensive rats and Wistar-Kyoto rats were assessed. The VPO1 expression was significantly increased concomitantly with definite vascular remodelling assessed by evaluating the media thickness, lumen diameter, media thickness-to-lumen diameter ratio and mean nuclear area in artery media in spontaneously hypertensive rats. In addition, in cultured rat aortic smooth muscle cells we found that the angiotensin II-mediated cell proliferation was inhibited by knockdown of VPO1 using small hairpin RNA. Moreover, the NADPH oxidase inhibitor, apocynin, and the hydrogen peroxide scavenger, catalase, but not the ERK1/2 inhibitor, PD98059, attenuated angiotensin II-mediated up-regulation of VPO1 and generation of hypochlorous acid. CONCLUSION VPO1 is a novel regulator of vascular smooth muscle cell proliferation via NADPH oxidase-H(2)O(2)-VPO1-hypochlorous acid-ERK1/2 pathways, which may contribute to vascular remodelling in hypertension.
Free Radical Biology and Medicine | 2011
Yong-Ping Bai; Chang-Ping Hu; Qiong Yuan; Jun Peng; Ruizheng Shi; Tianlun Yang; Zehong Cao; Yuan-Jian Li; Guangjie Cheng; Guo-Gang Zhang
Myeloperoxidase (MPO) is an important enzyme involved in the genesis and development of atherosclerosis. Vascular peroxidase 1 (VPO1) is a newly discovered member of the peroxidase family that is mainly expressed in vascular endothelial cells and smooth muscle cells and has structural characteristics and biological activity similar to those of MPO. Our specific aims were to explore the effects of VPO1 on endothelial cell apoptosis induced by oxidized low-density lipoprotein (ox-LDL) and the underlying mechanisms. The results showed that ox-LDL induced endothelial cell apoptosis and the expression of VPO1 in endothelial cells in a concentration- and time-dependent manner concomitant with increased intracellular reactive oxygen species (ROS) and hypochlorous acid (HOCl) generation, and up-regulated protein expression of the NADPH oxidase gp91(phox) subunit and phosphorylation of p38 MAPK. All these effects of ox-LDL were inhibited by VPO1 gene silencing and NADPH oxidase gp91(phox) subunit gene silencing or by pretreatment with the NADPH oxidase inhibitor apocynin or diphenyliodonium. The p38 MAPK inhibitor SB203580 or the caspase-3 inhibitor DEVD-CHO significantly inhibited ox-LDL-induced endothelial cell apoptosis, but had no effect on intracellular ROS and HOCl generation or the expression of NADPH oxidase gp91(phox) subunit or VPO1. Collectively, these findings suggest for the first time that VPO1 plays a critical role in ox-LDL-induced endothelial cell apoptosis and that there is a positive feedback loop between VPO1/HOCl and the now-accepted dogma that the NADPH oxidase/ROS/p38 MAPK/caspase-3 pathway is involved in ox-LDL-induced endothelial cell apoptosis.
Vascular Pharmacology | 2011
Jin-Fang Cheng; Guo-Hua Ni; Mei-Fang Chen; Yuan-Jian Li; Yong-Jin Wang; Chang-Lu Wang; Qiong Yuan; Ruizheng Shi; Chang-Ping Hu; Tianlun Yang
Profilin-1, a regulator of actin polymerization, has recently been linked to vascular hypertrophy and remodeling. Whether profilin-1 is involved in angiotensin (Ang) II-induced proliferation of vascular smooth muscle cells leading to vascular remodeling in hypertension remains unclear. The present study was designed to analyze the correlation of profilin-1 and vascular remodeling during hypertension and to evaluate the role of profilin-1 in proliferation of vascular smooth muscle cells and the underlying mechanisms. The vascular morphology and the expression of profilin-1 in arterial tissues of spontaneously hypertensive rats and Wistar-Kyoto rats were assessed. The profilin-1 expression was significantly increased concomitantly with definite vascular remodeling by evaluating the media thickness, lumen diameter, media thickness-to-lumen diameter ratio and mean nuclear area in artery media in spontaneously hypertensive rats, which was inhibited by treatment with losartan. In cultured rat aortic smooth muscle cells (RASMCs), Ang II induced profilin-1 expression in a dose- and time-dependent manner. Knockdown of profilin-1 using small hairpin RNA inhibited Ang II-induced proliferation of RASMCs. Moreover, blockade of JAK2/STAT3 signaling pathway also inhibited Ang II-induced proliferation of RASMCs and profilin-1 expression. These results suggest that profilin-1 mediates the proliferation of RASMCs induced by Ang II via activation of Ang II type 1 receptor/JAK2/STAT3 signaling pathway, which may contribute to vascular remodeling in hypertension.
Atherosclerosis | 2015
Yixin Tang; Qian Xu; Haiyang Peng; Zhaoya Liu; Tianlun Yang; Zaixin Yu; Guangjie Cheng; Xiao-Hui Li; Guo-Gang Zhang; Ruizheng Shi
Reactive oxygen species (ROS)-induced osteogenic differentiation of vascular smooth muscle cells (VSMCs) is associated with the pathogenesis of vascular calcification. Vascular peroxidase 1 (VPO1), a peroxidase in the cardiovascular system, utilizes the hydrogen peroxide (H2O2) produced by co-expressed NADPH oxidases to produce hypochlorous acid (HOCl) and catalyze peroxidative reactions. The aim of this study was to determine whether VPO1 plays a role in the osteogenic differentiation of VSMCs in the setting of the vascular calcification induced by oxidized low-density lipoprotein (ox-LDL). In cultured primary rat VSMCs, we observed that the expression of VPO1 was significantly increased in combination with increases in calcification, as demonstrated via increased mineralization, as well as increased alkaline phosphatase (ALP) activity and up-regulated runt-related transcription factor 2 (Runx2) expression in ox-LDL-treated cells. Ox-LDL-induced VSMC calcification and Runx2 expression were both inhibited by knockdown of VPO1 using a small interfering RNA or by an NADPH oxidase inhibitor. Moreover, the knockdown of VPO1 in VSMCs suppressed the production of HOCl and the phosphorylation of AKT, ERK and P38 MAPK. Furthermore, HOCl treatment facilitated the phosphorylation of AKT, ERK1/2 and P38 MAPK and the expression of Runx2, whereas LY294002 (a specific inhibitor of PI3K), U0126 (a specific inhibitor of ERK1/2) and SB203580 (a specific inhibitor of P38 MAPK) significantly attenuated the HOCl-induced up-regulation of Runx2. Collectively, these results demonstrated that VPO1 promotes ox-LDL-induced VSMC calcification via the VPO1/HOCl/PI3K/AKT, ERK1/2, and P38 MAPK/Runx2 signaling pathways.
Coronary Artery Disease | 2014
Wei Pan; Jingjia Yu; Ruizheng Shi; Lei Yan; Tianlun Yang; Yuanjian Li; Zhuohua Zhang; Guolong Yu; Yong-Ping Bai; Edward H. Schuchman; Xingxuan He; Guo-Gang Zhang
BackgroundAlthough there are several reported evidences for a pathogenic role of sphingolipid signaling in atherosclerosis, peripheral blood levels of ceramide and secretory acid sphingomyelinase (S-SMase) activity in patients with acute coronary syndromes (ACS) have not been evaluated. Methods and resultsA total of 304 CAD patients and 52 healthy individuals were divided into four groups: control group (n=52), stable angina pectoris (SAP) group (n=98), unstable angina pectoris (UAP) group (n=92), and acute myocardial infarction (AMI) group (n=114). Plasma levels of sphingomyelin (SPM) were elevated in patients with UAP and AMI compared with those in the control and SAP participants. Plasma ceramide levels and S-SMase activity in patients with ACS (including UAP and AMI) on day 0 were significantly higher than those in the control and SAP participants. Elevation in plasma ceramide levels in patients with UAP and AMI was sustained until a day after percutaneous coronary intervention or day 7, respectively. Moreover, in patients with UAP, S-SMase activity elevation on day 0 was followed by a gradual decrease toward the SAP range up to a day after percutaneous coronary intervention. In patients with AMI, elevation in S-SMase activity showed a peak on day 3. ConclusionSerial changes in plasma ceramide and S-SMase activity were documented in patients with ACS. These findings provide an insight into the molecular mechanism of plaque destabilization.
Biochemical and Biophysical Research Communications | 2013
Lizhen Yang; Yong-Ping Bai; Nian-Sheng Li; Chang-Ping Hu; Jun Peng; Guangjie Cheng; Guo-Gang Zhang; Ruizheng Shi
Reactive oxygen species (ROS) contributes to endothelial dysfunction that is involved in the pathogeneses of hypertension. Vascular peroxidase 1 (VPO1) can utilize ROS to catalyze peroxidative reactions, possibly enhancing endothelial dysfunction. This study is to identify VPO1s involvement in endothelial dysfunction and hypertension. Sixty-four spontaneously hypertensive rats (SHRs) and 64 age-matched, bodyweight controlled normotensive Wistar-Kyoto rats (WKYs) were randomly grouped and studied at the age of 5, 8, 13 and 20 weeks (16 animals, each). Blood pressure and vasodilator responses to acetylcholine in aortic rings were observed. The expressions of VPO1 and endothelial NO synthase (eNOS) in aortas were assessed by quantitative reverse transcription-PCR and western blotting analysis. Plasma concentrations of hydrogen peroxide (H2O2) and NO, NOX activity, hypochlorous acid (HOCl) production, and 3-nitrotyrosine content in aortic homogenates were also determined in this study. Along with the development of hypertension in SHR rats, VPO1 expression was up-regulated together with a significant increase in NOX activity, HOCl production, 3-nitrotyrosine content, and plasma H2O2 level compared with WKYs at 8, 13 and 20 weeks of age. In contrast, blood NO levels were decreased and aortic relaxation to acetylcholine was deteriorated in SHRs. The over-expression of VPO1 during the development of hypertension, accompanied by the endothelial dysfunction, the decreased NO levels, the elevated NOX and ROS activities, indicates a clear connection between VPO1 gene and hypertension. VPO1 may pathogenetically contribute to hypertension via signal pathways involving NOX-H2O2-VPO1-HOCl or JNK/p38 MAPK although further studies are needed to determine the precise mechanisms.
Journal of Atherosclerosis and Thrombosis | 2016
Min Zhao; Wei Pan; Ruizheng Shi; Yong-Ping Bai; Bo-yang You; Kai Zhang; Qiong-Mei Fu; Edward H. Schuchman; Xingxuan He; Guo-Gang Zhang
Aim: Macrophage apoptosis is a vital event in advanced atherosclerosis, and oxidized low-density lipoprotein (ox-LDL) is a major contributor to this process. Acid sphingomyelinase (ASM) and ceramide are also involved in the induction of apoptosis, particularly in macrophages. Our current study focuses on ASM and investigates its role in ox-LDL-induced macrophage apoptosis. Methods: Human THP-1 and mouse peritoneal macrophages were cultured in vitro and treated with ox-LDL. ASM activity and ceramide levels were quantified using ultra performance liquid chromatography. Protein and mRNA levels were analyzed using Western blot analysis and quantitative realtime PCR, respectively. Cell apoptosis was determined using Hoechst staining and flow cytometry. Results: Ox-LDL-induced macrophage apoptosis was triggered by profound endoplasmic reticulum (ER) stress, leading to an upregulation of ASM activity and ceramide levels at an early stage. ASM was inhibited by siRNA or desipramine (DES), and/or ceramide was degraded by recombinant acid ceramidase (AC). These events attenuated the effect of ox-LDL on ER stress. In contrast, recombinant ASM upregulated ceramide and ER stress. ASM siRNA, DES, recombinant AC, and ER stress inhibitor 4-phenylbutyric acid were blocked by elevated levels of C/EBP homologous protein (CHOP); ox-LDL induced elevated levels of CHOP. These events attenuated macrophage apoptosis. Conclusion: These results indicate that ASM/ceramide signaling pathway is involved in ox-LDL-induced macrophage apoptosis via ER stress pathway.
Redox biology | 2017
Zhaoya Liu; Yanbo Liu; Qian Xu; Haiyang Peng; Yixin Tang; Tianlun Yang; Zaixin Yu; Guangjie Cheng; Guo-Gang Zhang; Ruizheng Shi
Vascular peroxidase 1 (VPO1) is a member of the peroxidase family which aggravates oxidative stress by producing hypochlorous acid (HOCl). Our previous study demonstrated that VPO1 plays a critical role in endothelial dysfunction through dimethylarginine dimethylaminohydrolase2 (DDAH2)/asymmetric Dimethylarginine (ADMA) pathway. Hereby we describe the regulatory role of VPO1 on endothelial nitric oxide synthase (eNOS) expression and activity in human umbilical vein endothelial cells (HUVECs). In HUVECs AngiotensinII (100 nM) treatment reduced Nitric Oxide (NO) production, decreased eNOS expression and activity, which were reversed by VPO1 siRNA. Knockdown of VPO1 also attenuated ADMA production and eNOS uncoupling while enhancing phosphorylated ser1177 eNOS expression level. Furthermore, HOCl stimulation was shown to directly induce ADMA production and eNOS uncoupling, decrease phosphorylated ser1177 eNOS expression. It also significantly suppressed eNOS expression and activity together with NO production. Therefore, VPO1 plays a vital role in regulating eNOS expression and activity via hydrogen peroxide (H2O2)-VPO1-HOCl pathway.
Cell Biology International | 2014
Qiong Yuan; Yong-Ping Bai; Ruizheng Shi; Si-Yu Liu; Xu-Meng Chen; Lei Chen; Yuan-Jian Li; Chang-Ping Hu
Endothelial progenitor cells (EPCs) are involved in the repair of vessels and angiogenesis and are useful in the treatment of ischemic diseases. The dimethylarginine dimethylaminohydrolase (DDAH)/asymmetric dimethylarginine (ADMA) pathway is regulated by silent information regulator 1 (SIRT1), leading to the senescence of endothelial cells (ECs). Here, we demonstrated that peripheral blood EPCs predominantly expressed DDAH2 that increased with EPC differentiation. EPC senescence and dysfunction were induced on interruption of DDAH2 expression, whereas the mRNA expression of vascular endothelial growth factor (VEGF) and kinase‐domain insert containing receptor (KDR) were downregulated. Moreover, SIRT1 expression increased with EPC differentiation. Interruption of SIRT1 inhibited DDAH2, VEGF, and KDR expression, but had no effect on the level of ADMA. From our data, we concluded that DDAH2 is involved in the differentiation of EPCs and regulates the senescence and function of EPCs through the VEGF/KDR pathway by activation of SIRT1.
Planta Medica | 2009
Ruizheng Shi; Xiao-Hui Li; Su-Jie Jia; Qiong-Mei Fu; Yue-Rong Chen; Jia Chen; An Chen; Shi-Xun Li; Gui-San Tan; Yuan-Jian Li; Guo-Gang Zhang
The aim of this study was to investigate the effect of demethylbellidifolin (DMB), a major xanthone compound of Swertia davidi franch, on nitroglycerin (NTG) tolerance. In the in vivo portion of the study, pretreatment of Sprague-Dawley rats with NTG (10 mg/kg) for 8 days caused tolerance to the depressor effect of NTG. This was evident because the depressor effect of NTG (150 microg/kg, I. V.) was almost completely abolished in the tolerant rats. The tolerance could be diminished by treatment with DMB. In the in vitro study, the exposure of aortic rings of Sprague-Dawley rats to NTG (10 microM) for 30 min caused tolerance to the vasodilating effect of NTG. The tolerance is evident because of a substantial right shift of the NTG concentration-relaxation curves. This shift was reduced by pretreatment of the aortic rings with DMB. In cultured human umbilical vein endothelial cells (HUVECs), incubation of NTG for 16 h increased reactive oxygen species (ROS) production, attenuated cyclic guanosine monophosphate (cGMP) levels and decreased the activity of aldehyde dehydrogenase 2 (ALDH-2), the main enzyme responsible for NTG bioactivation. All the effects mentioned above were prevented by co-incubation with DMB. In conclusion, DMB prevents NTG tolerance via increasing ALDH-2 activity through decreasing ROS production.