Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where S. M. Johnson is active.

Publication


Featured researches published by S. M. Johnson.


Applied Physics Letters | 1995

Molecular‐beam epitaxial growth of CdTe(112) on Si(112) substrates

T. J. de Lyon; D. Rajavel; S. M. Johnson; C. A. Cockrum

High crystalline quality epitaxial CdTe(112)B/ZnTe films were deposited by molecular‐beam epitaxy directly onto vicinal Si(112) substrates, without use of GaAs interfacial layers. The films were characterized with x‐ray diffraction, optical microscopy, and wet chemical defect etching. Single crystal, twin‐free CdTe(112)B films exhibit structural quality exceeding that previously reported for CdTe(112)B heteroepitaxy on GaAs/Si(112) or GaAs(112)B substrates. X‐ray rocking curve full width at half‐maximum of 72 arcsec for CdTe(224) reflection and near‐surface etch pit densities (EPD) of 2×106 cm−2 have been observed for 8‐μm‐thick CdTe films. EPD depth profiles indicate that the threading dislocation density decreases with increasing II–VI epilayer thickness up to approximately 5 μm thickness and saturates at 2×106 cm−2 for thickness exceeding 5 μm. The CdTe epilayer orientation was observed to tilt 2° away from the Si(112) substrate orientation toward the [001] direction.


Journal of Electronic Materials | 2001

Fabrication of high-performance large-format MWIR focal plane arrays from MBE-grown HgCdTe on 4″ silicon substrates

J. B. Varesi; R. E. Bornfreund; A. C. Childs; W. A. Radford; K. D. Maranowski; J. M. Peterson; S. M. Johnson; L. M. Giegerich; T. J. de Lyon; J. E. Jensen

We have developed the capability to grow HgCdTe mid-wave infrared radiation double-layer heterojunctions (MWIR DLHJs) on 4″ Si wafers by molecular beam epitaxy (MBE), and fabricate devices from these wafers that are comparable to those produced by mature technologies. Test data show that the detectors, which range in cutoff wavelength over 4–7 μm, are comparable to the trendline performance of liquid phase epitaxy (LPE)-grown material. The spectral characteristics are similar, with a slight decrease in quantum efficiency attributable to the Si substrate. With respect to R0A, the HgCdTe/Si devices are closer to the theoretical radiative-limit than LPE-grown detectors. Known defect densities in the material have been correlated to device performance through a simple model. Slight 1/f noise increases were measured in comparison to the LPE material, but the observed levels are not sufficient to significantly degrade focal plane array (FPA) performance. In addition to discrete detectors, two FPA formats were fabricated. 128×128 FPAs show MWIR sensitivity comparable to mature InSb technology, with pixel operability values in excess of 99%. A 640×480 FPA further demonstrates the high-sensitivity and high-operability capabilities of this material.


Journal of Electronic Materials | 1995

Direct growth of CdZnTe/Si substrates for large-area HgCdTe infrared focal plane arrays

S. M. Johnson; T. J. de Lyon; C. A. Cockrum; William J. Hamilton; T. Tung; F. I. Gesswein; Bonnie A. Baumgratz; L. M. Ruzicka; O. K. Wu; J. A. Roth

Direct epitaxial growth of high-quality 100lCdZnTe on 3 inch diameter vicinal {100}Si substrates has been achieved using molecular beam epitaxy (MBE); a ZnTe initial layer was used to maintain the {100} Si substrate orientation. The properties of these substrates and associated HgCdTe layers grown by liquid phase epitaxy (LPE) and subsequently processed long wavelength infrared (LWIR) detectors were compared directly with our related efforts using CdZnTe/ GaAs/Si substrates grown by metalorganic chemical vapor deposition (MOCVD). The MBE-grown CdZnTe layers are highly specular and have both excellent thickness and compositional uniformity. The x-ray full-width at half-maximum (FWHM) of the MBE-grown CdZnTe/Si increases with composition, which is a characteristic of CdZnTe grown by vapor phase epitaxy, and is essentially equivalent to our results obtained on CdZnTe/GaAs/Si. As we have previously observed, the x-ray FWHM of LPE-grown HgCdTe decreases, particularly for CdZnTe compositions near the lattice matching condition to HgCdTe; so far the best value we have achieved is 54 arc-s. Using these MBE-grown substrates, we have fabricated the first high-performance LWIR HgCdTe detectors and 256 x 256 arrays using substrates consisting of CdZnTe grown directly on Si without the use of an intermediate GaAs buffer layer. We find first that there is no significant difference between arrays fabricated on either CdZnTe/Si or CdZnTe/GaAs/Si and second that the results on these Si-based substrates are comparable with results on bulk CdZnTe substrates at 78K. Further improvements in detector performance on Si-based substrates require a decrease in the dislocation density.


Journal of Electronic Materials | 1993

MOCVD grown CdZnTe/GaAs/Si substrates for large-area HgCdTe IRFPAs

S. M. Johnson; J. A. Vigil; J. B. James; C. A. Cockrum; W. H. Konkel; M. H. Kalisher; R. F. Risser; T. Tung; W. J. Hamilton; W. L. Ahlgren; J. M. Myrosznyk

Large-area HgCdTe 480×640 thermal-expansion-matched hybrid focal plane arrays were achieved by substituting metalorganic chemical vapor deposition (MOCVD)-grown CdZnTe/GaAs/Si alternative substrate in place of bulk CdZnTe substrates for the growth of HgCdTe p-on-n double-layer heterojunctions by controllably-doped mercury-melt liquid phase epitaxy (LPE). (100) CdZnTe was grown by MOCVD on GaAs/Si using a vertical-flow high-speed rotating disk reactor which incorporates up to three two-inch diameter substrates. Layers having specular surface morphology, good crystalline structure, and surface macro defect densities <50 cm−2 are routinely achieved and both the composition uniformity and run-to-run reproducibility were very good. As the composition of the CdZnTe layers increases, the x-ray full width at half maximum (FWHM) increases; this is a characteristic of CdZnTe grown by VPE techniques and is apparently associated with phase separation. Despite a broader x-ray FWHM for the fernary CdZnTe, the FWHM of HgCdTe grown by LPE on these substrates decreases, particularly for [ZnTe] compositions near the lattice matching condition to HgCdTe. An additional benefit of the ternary CdZnTe is an improved surface morphology of the HgCdTe layers. Using these silicon-based substrates, we have demonstrated 78K high-performance LWIR HgCdTe 480×640 arrays and find that their performance is comparable to similar arrays fabricated on bulk CdZnTe substrates for temperatures exceeding approximately 78K. The performance at lower temperatures is apparently limited by the dislocation density which is typically in the low-mid 106 cm−2 range for these heteroepitaxial materials.


Journal of Electronic Materials | 1996

Heteroepitaxy of HgCdTe(112) infrared detector structures on Si(112) substrates by molecular-beam epitaxy

T. J. de Lyon; Rajesh D. Rajavel; J. E. Jensen; O. K. Wu; S. M. Johnson; C. A. Cockrum; G. M. Venzor

High-quality, single-crystal epitaxial films of CdTe(112)B and HgCdTe(112)B have been grown directly on Si(112) substrates without the need for GaAs interfacial layers. The CdTe and HgCdTe films have been characterized with optical microscopy, x-ray diffraction, wet chemical defect etching, and secondary ion mass spectrometry. HgCdTe/Si infrared detectors have also been fabricated and tested. The CdTe(112)B films are highly specular, twin-free, and have x-ray rocking curves as narrow as 72 arc-sec and near-surface etch pit density (EPD) of 2 × 106 cm−2 for 8 µm thick films. HgCdTe(112)B films deposited on Si substrates have x-ray rocking curve FWHM as low as 76 arc-sec and EPD of 3-22 × 106 cm−2. These MBE-grown epitaxial structures have been used to fabricate the first high-performance HgCdTe IR detectors grown directly on Si without use of an intermediate GaAs buffer layer. HgCdTe/Si infrared detectors have been fabricated with 40% quantum efficiency and R0A = 1.64 × 104 Ωm2 (0 FOV) for devices with 7.8 µm cutoff wavelength at 78Kto demonstrate the capability of MBE for growth of large-area HgCdTe arrays on Si.


Journal of Electronic Materials | 2001

MBE growth of HgCdTe on silicon substrates for large format MWIR focal plane arrays

K. D. Maranowski; J. M. Peterson; S. M. Johnson; J. B. Varesi; A. C. Childs; R. E. Bornfreund; A. A. Buell; W. A. Radford; T. J. de Lyon; J. E. Jensen

HgCdTe p-on-n double layer heterojunctions (DLHJs) for mid-wave infrared (MWIR) detector applications have been grown on 100 mm (4 inch) diameter (211) silicon substrates by molecular beam epitaxy (MBE). The structural quality of these films is excellent, as demonstrated by x-ray rocking curves with full widths at half maximum (FWHMs) of 80–100 arcsec, and etch pit densities from 1 106 to 7 106 cm−2. Morphological defect densities for these layers are generally less than 1000 cm−2. Improving Hg flux coverage of the wafer during growth can reduce void defects near the edges of the wafers. Improved tellurium source designs have resulted in better temporal flux stability and a reduction of the center to edge x-value variation from 9% to only 2%. Photovoltaic MWIR detectors have been fabricated from some of these 100mm wafers, and the devices show performance at 140 K which is comparable to other MWIR detectors grown on bulk CdZnTe substrates by MBE and by liquid phase epitaxy.


Proceedings of SPIE, the International Society for Optical Engineering | 2005

Third Generation FPA Development Status at Raytheon Vision Systems

W. A. Radford; E. A. Patten; D. F. King; Gregory K. Pierce; J. Vodicka; P. M. Goetz; G. M. Venzor; E. P. G. Smith; R. W. Graham; S. M. Johnson; J. A. Roth; Brett Z. Nosho; J. E. Jensen

Raytheon Vision Systems (RVS) is developing two-color, large-format infrared FPAs to support the US Armys Third Generation FLIR systems. RVS has produced 640 x 480 two-color FPAs with a 20 micron pixel pitch. Work is also underway to demonstrate a 1280 x 720 two-color FPA in 2005. The FPA architecture has been designed to achieve nearly simultaneous temporal detection of the spectral bands while being producible for pixel dimensions as small as 20 microns. Raytheons approach employs a readout integrated circuit (ROIC) with Time Division Multiplexed Integration (TDMI). This ROIC is coupled to bias-selectable two-color detector array with a single contact per pixel. The two-color detector arrays are fabricated from MBE-grown HgCdTe triple layer heterojunction (TLHJ) wafers. The single indium bump design is producible for 20 μm unit cells and exploits mature fabrication processes that are in production at RVS for Second Generation FPAs. This combination allows for the high temporal and spatial color registration while providing a low-cost, highly producible and robust manufacturing process. High-quality MWIR/LWIR (M/L) 640 x 480 TDMI FPAs with have been produced and imaged from multiple fabrication lots. These FPAs have LWIR cutoffs ranging to 11 micron at 78K. These 20 micron pixel FPAs have demonstrated excellent sensitivity and pixel operabilities exceeding 99%. NETDs less than 25 mK at f/5 have been demonstrated for both bands operating simultaneously.


Applied Physics Letters | 1993

Direct molecular-beam epitaxial growth of ZnTe(100) and CdZnTe(100)/ZnTe(100) on Si(100) substrates

T. J. de Lyon; J. A. Roth; O. K. Wu; S. M. Johnson; C. A. Cockrum

Epitaxial structures of ZnTe(100) and CdZnTe(100)/ZnTe(100) have been deposited by molecular‐beam epitaxy onto Si(100) substrates misoriented from 0° to 8° towards the [011] direction. The films were characterized with x‐ray diffraction, photoluminescence spectroscopy, optical microscopy, and stylus profilometry. Single‐crystal CdZnTe(100) films comparable in structural quality to those obtained with growth on GaAs/Si composite substrates have been demonstrated on both 4° and 8° misoriented Si with the use of ZnTe buffer layers. X‐ray rocking curves with FWHM less than 300 arcsec for ZnTe (400) and less than 160 arcsec for CdZnTe(400) have been obtained for as‐grown films. Specular surface morphologies, superior to those obtained on GaAs/Si composite substrates, are also observed.


Proceedings of SPIE, the International Society for Optical Engineering | 2006

Status of two-color and large format HgCdTe FPA technology at Raytheon Vision Systems

E. P. G. Smith; R. E. Bornfreund; I. Kasai; L. T. Pham; E. A. Patten; J. M. Peterson; J. A. Roth; Brett Z. Nosho; T. J. De Lyon; J. E. Jensen; James Bangs; S. M. Johnson; W. A. Radford

Raytheon Vision Systems (RVS) is developing two-color and large format single color FPAs fabricated from molecular beam epitaxy (MBE) grown HgCdTe triple layer heterojunction (TLHJ) wafers on CdZnTe substrates and double layer heterojunction (DLHJ) wafers on Si substrates, respectively. MBE material growth development has resulted in scaling TLHJ growth on CdZnTe substrates from 10cm2 to 50cm2, long-wavelength infrared (LWIR) DLHJ growth on 4-inch Si substrates and the first demonstration of mid-wavelength infrared (MWIR) DLHJ growth on 6-inch Si substrates with low defect density (<1000cm-2) and excellent uniformity (composition<0.1%, cut-off wavelength Δcenter-edge<0.1μm). Advanced FPA fabrication techniques such as inductively coupled plasma (ICP) etching are being used to achieve high aspect ratio mesa delineation of individual detector elements with benefits to detector performance. Recent two-color detectors with MWIR and LWIR cut-off wavelengths of 5.5μm and 10.5μm, respectively, exhibit significant improvement in 78K LW performance with >70% quantum efficiency, diffusion limited reverse bias dark currents below 300pA and RA products (zero field-of-view, +150mV bias) in excess of 1×103 Ωcm2. Two-color 20μm unit-cell 1280×720 MWIR/LWIR FPAs with pixel response operability approaching 99% have been produced and high quality simultaneous imaging of the spectral bands has been achieved by mating the FPA to a readout integrated circuit (ROIC) with Time Division Multiplexed Integration (TDMI). Large format mega pixel 20μm unit-cell 2048×2048 and 25μm unit-cell 2560×512 FPAs have been demonstrated using DLHJ HgCdTe growth on Si substrates in the short wavelength infrared (SWIR) and MWIR spectral range. Recent imaging of 30μm unit-cell 256×256 LWIR FPAs with 10.0-10.7μm 78K cut-off wavelength and pixel response operability as high as 99.7% show the potential for extending HgCdTe/Si technology to LWIR wavelengths.


Infrared Technology and Applications XXX | 2004

Wide-FOV FPAs for a shipboard distributed aperture system

David J. Gulbransen; Stephen H. Black; A. C. Childs; Christopher L. Fletcher; S. M. Johnson; W. A. Radford; G. M. Venzor; J. P. Sienicki; A. D. Thompson; J. H. Griffith; A. A. Buell; M. F. Vilela; M. D. Newton; Edward H. Takken; James R. Waterman; Keith Krapels

The Navy faces an ever evolving threat scenario, ranging from sub-sonic sea skimming cruise missiles to newer, unconventional threats such as that experienced by the USS Cole. Next generation naval technology development programs are developing “stealthy” ships by reducing a ships radar cross section and controlling electromagnetic emissions. To meet these threat challenges in an evolving platform environment, ONR has initiated the “Wide Aspect MWIR Array” program. In support of this program, Raytheon Vision Systems (RVS) is developing a 2560 X 512 element focal plane array, utilizing Molecular Beam Epitaxially grown HgCdTe on silicon detector technology. RVS will package this array in a sealed Dewar with a long-life cryogenic cooler, electronics, on-gimbal power conditioning and a thermal reference source. The resulting sub system will be a component in a multi camera distributed aperture situation awareness sensor, which will provide continuous surveillance of the horizon. We will report on the utilization of MWIR Molecular Beam Epitaxial HgCdTe on Silicon material for fabrication of the detector arrays. Detector arrays fabricated on HgCdTe/Si have no thermal expansion mismatch relative to the readout integrated circuits. Therefore large-area focal plane arrays (FPAs) can be developed without concern for thermal cycle reliability. In addition these devices do not require thinning or reticulation like InSb FPAs to yield the high levels of Modulation Transfer Function (MTF) required by a missile warning sensor. HgCdTe/Si wafers can be scaled up to much larger sizes than the HgCdTe/CdZnTe wafers. Four-inch-diameter HgCdTe/Si wafers are currently being produced and are significantly larger than the standard 1.7 inch x 2.6 inch HgCdTe/CdTe wafers. The use of Si substrates also enables the use of automated semiconductor fabrication equipment.

Collaboration


Dive into the S. M. Johnson's collaboration.

Researchain Logo
Decentralizing Knowledge