Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where S.M. Wolfe is active.

Publication


Featured researches published by S.M. Wolfe.


Physics of Plasmas | 1994

First results from Alcator-C-MOD

Ian H. Hutchinson; R. L. Boivin; F. Bombarda; P.T. Bonoli; S. Fairfax; C. Fiore; Jennifer Ann Goetz; S. Golovato; R. Granetz; M. Greenwald; S. Horne; A. Hubbard; James H. Irby; B. LaBombard; B. Lipschultz; E. Marmar; G. McCracken; M. Porkolab; J. E. Rice; J. A. Snipes; Y. Takase; J. L. Terry; S.M. Wolfe; C. Christensen; D. Garnier; M. Graf; T. Hsu; T. Luke; M. May; A. Niemczewski

Early operation of the Alcator‐C‐MOD tokamak [I.H. Hutchinson, Proceedings of IEEE 13th Symposium on Fusion Engineering, Knoxville, TN, edited by M. Lubell, M. Nestor, and S. Vaughan (Institute of Electrical and Electronic Engineers, New York, 1990), Vol. 1, p. 13] is surveyed. Reliable operation, with plasma current up to 1 MA, has been obtained, despite the massive conducting superstructure and the associated error fields. However, vertical disruptions are not slowed by the long vessel time constant. With pellet fueling, peak densities up to 9×1020 m−3 have been attained and ‘‘snakes’’ are often seen. Initial characterization of divertor and scrape‐off layer is presented and indicates approximately Bohm diffusion. The edge plasma shows a wealth of marfe‐like phenomena, including a transition to detachment from the divertor plates with accompanying radiative divertor regions. Energy confinement generally appears to exceed the expectations of neo‐Alcator scaling. A transition to Ohmic H mode has been observed. Ion cyclotron heating experiments have demonstrated good power coupling, in agreement with theory.


Nuclear Fusion | 2004

Transport-driven Scrape-Off-Layer flows and the boundary conditions imposed at the magnetic separatrix in a tokamak plasma

B. LaBombard; J. E. Rice; A. Hubbard; J.W. Hughes; M. Greenwald; James H. Irby; Y. Lin; B. Lipschultz; E. Marmar; C. S. Pitcher; N. Smick; S.M. Wolfe; S.J. Wukitch

Plasma profiles and flows in the low- and high-field side scrape-off-layer (SOL) regions in Alcator C-Mod are found to be remarkably sensitive to magnetic separatrix topologies (upper-, lower- and double-null) and to impose topology-dependent flow boundary conditions on the confined plasma. Near-sonic plasma flows along magnetic field lines are observed in the high-field SOL, with magnitude and direction clearly dependent on X-point location. The principal drive mechanism for the flows is a strong ballooning-like poloidal transport asymmetry: parallel flows arise so as to re-symmetrize the resulting poloidal pressure variation in the SOL. Secondary flows involving a combination of toroidal rotation and Pfirsch–Schluter ion currents are also evident. As a result of the transport-driven parallel flows, the SOL exhibits a net co-current (counter-current) volume-averaged toroidal momentum when B × ∇B is towards (away from) the X-point. Depending on the discharge conditions, flow momentum can couple across the separatrix and affect the toroidal rotation of the confined plasma. This mechanism accounts for a positive (negative) increment in central plasma co-rotation seen in L-mode discharges when B × ∇B is towards (away from) the X-point. Experiments in ion-cyclotron range-of-frequency-heated discharges suggest that topology-dependent flow boundary conditions may also play a role in the sensitivity of the L–H power threshold to X-point location: in a set of otherwise similar discharges, the L–H transition is seen to be coincident with central rotation achieving roughly the same value, independent of magnetic topology. For discharges with B × ∇B pointing away from the X-point (i.e. with the SOL flow boundary condition impeding co-current rotation), the same characteristic rotation can only be achieved with higher input power.


Nuclear Fusion | 1998

Observations of central toroidal rotation in ICRF heated Alcator C-Mod plasmas

J. E. Rice; M. Greenwald; Ian H. Hutchinson; E. Marmar; Y. Takase; S.M. Wolfe; F. Bombarda

Impurity toroidal rotation has been observed in the centre of Alcator C-Mod ion cyclotron range of frequencies (ICRF) heated plasmas, from the Doppler shifts of argon X ray lines. Rotation velocities greater than 1.2 × 107 cm/s (ω = 200 krad/s) in the co-current direction have been observed in H mode discharges that had no direct momentum input. There is a correlation between the increase in the central impurity rotation velocity and the increase in the plasma stored energy (confinement enhancement), induced by ICRF heating, although other factors may be at play. The toroidal rotation velocity is highest near the magnetic axis, and decreases with increasing minor radius. A radial electric field of 300 V/cm at r/a = 0.3 has been inferred from the force balance equation. The direction of the rotation changes when the plasma current direction is reversed, remaining co-current. Impurity toroidal rotation in ICRF heated plasmas is in the direction opposite to the rotation in ohmic L mode plasmas; co-current rotation has also been observed during purely ohmic H modes. When the ICRF heating is turned off, the toroidal rotation decays with a characteristic time of order 50 ms, similar to the energy confinement time, and much shorter than the calculated neoclassical momentum damping time.


Physics of Plasmas | 2005

Transport-driven scrape-off layer flows and the x-point dependence of the L-H power threshold in Alcator C-Mod

B. LaBombard; J. E. Rice; A. Hubbard; J.W. Hughes; M. Greenwald; R. Granetz; James H. Irby; Y. Lin; B. Lipschultz; E. Marmar; K. Marr; D. A. Mossessian; R.R. Parker; W. Rowan; N. Smick; J. A. Snipes; J. L. Terry; S.M. Wolfe; S.J. Wukitch

Factor of ∼2 higher power thresholds for low- to high-confinement mode transitions (L-H) with unfavorable x-point topologies in Alcator C-Mod [Phys. Plasmas 1, 1511 (1994)] are linked to flow boundary conditions imposed by the scrape-off layer (SOL). Ballooning-like transport drives flow along magnetic field lines from low- to high-field regions with toroidal direction dependent on upper/lower x-point balance; the toroidal rotation of the confined plasma responds, exhibiting a strong counter-current rotation when B×∇B points away from the x point. Increased auxiliary heating power (rf, no momentum input) leads to an L-H transition at approximately twice the edge electron pressure gradient when B×∇B points away. As gradients rise prior to the transition, toroidal rotation ramps toward the co-current direction; the H mode is seen when the counter-current rotation imposed by the SOL flow becomes compensated. Remarkably, L-H thresholds in lower-limited discharges are identical to lower x-point discharges; SOL...


Physics of Plasmas | 1995

Scaling and transport analysis of divertor conditions on the Alcator C-Mod tokamak

B. LaBombard; Jennifer Ann Goetz; C. Kurz; D. Jablonski; B. Lipschultz; G. McCracken; A. Niemczewski; R. L. Boivin; F. Bombarda; C. Christensen; S. Fairfax; C. Fiore; D. Garnier; M. Graf; S. Golovato; R. Granetz; M. Greenwald; S. Horne; A. Hubbard; Ian H. Hutchinson; James H. Irby; J. Kesner; T. Luke; E. Marmar; M. May; P. O’Shea; M. Porkolab; J. Reardon; J. E. Rice; J. Schachter

Detailed measurements and transport analysis of divertor conditions in Alcator C‐Mod [Phys. Plasmas 1, 1511 (1994)] are presented for a range of line‐averaged densities, 0.7<ne<2.2×1020 m−3. Three parallel heat transport regimes are evident in the scrape‐off layer: sheath‐limited conduction, high‐recycling divertor, and detached divertor, which can coexist in the same discharge. Local cross‐field pressure gradients are found to scale simply with a local electron temperature. This scaling is consistent with classical electron parallel conduction being balanced by anomalous cross‐field transport (χ⊥∼0.2 m2 s−1) proportional to the local pressure gradient. A 60%–80% of divertor power is radiated in attached discharges, approaching 100% in detached discharges. Detachment occurs when the heat flux to the plate is low and the plasma pressure is high (Te∼5 eV). High neutral pressures in the divertor are nearly always present (1–20 mTorr), sufficient to remove parallel momentum via ion–neutral collisions.


Nuclear Fusion | 1985

Progress in tokamak research at MIT

R.R. Parker; M. Greenwald; S.C. Luckhardt; E. Marmar; M. Porkolab; S.M. Wolfe

The major results and accomplishments of the MIT tokamak programme are surveyed. These are considered to be 1) discovery of an Ohmic-heating confinement law in which τE ∝ ;aR2; 2) reduction of anomalous ion conduction to the neoclassical value by use of pellet fuelling; 3) formulation of an empirical model for confinement of impurities in ohmically heated tokamaks; 4) seminal experiments on current drive by lower hybrid waves and production of quasi-stationary driven current discharges with n ≈1020 m–3; and 5) heating of electrons by Landau damping of lower hybrid waves with ΔTe≈1 keV. The advance of n0τE is also traced from values of about 10l8 sm−3 which were typical of tokamaks at the beginning of the Alcator programme to values achieved on Alcator C in excess of 6 X 1019 sm−3, which is required for thermalized energy breakeven at higher temperature.


Nuclear Fusion | 2009

Experimental vertical stability studies for ITER performance and design guidance

D.A. Humphreys; T.A. Casper; N.W. Eidietis; M. Ferrara; D.A. Gates; Ian H. Hutchinson; G.L. Jackson; E. Kolemen; J.A. Leuer; J.B. Lister; L.L. LoDestro; W.H. Meyer; L.D. Pearlstein; A. Portone; F. Sartori; M.L. Walker; A.S. Welander; S.M. Wolfe

United States Department of Energy (DE-FC02-04ER54698, DEAC52- 07NA27344, and DE-FG02-04ER54235)


Nuclear Fusion | 2011

Observations of core toroidal rotation reversals in Alcator C-Mod ohmic L-mode plasmas

J. E. Rice; B.P. Duval; M.L. Reinke; Y. Podpaly; A. Bortolon; R.M. Churchill; I. Cziegler; P. H. Diamond; A. Dominguez; P. Ennever; C. Fiore; R. Granetz; M. Greenwald; A. Hubbard; J.W. Hughes; James H. Irby; Y. Ma; E. Marmar; R. M. McDermott; M. Porkolab; N. Tsujii; S.M. Wolfe

Direction reversals of intrinsic toroidal rotation have been observed in Alcator C-Mod ohmic L-mode plasmas following modest electron density or toroidal magnetic field ramps. The reversal process occurs in the plasma interior, inside of the q = 3/2 surface. For low density plasmas, the rotation is in the co-current direction, and can reverse to the counter-current direction following an increase in the electron density above a certain threshold. Reversals from the co- to counter-current direction are correlated with a sharp decrease in density fluctuations with k(R) >= 2 cm(-1) and with frequencies above 70 kHz. The density at which the rotation reverses increases linearly with plasma current, and decreases with increasing magnetic field. There is a strong correlation between the reversal density and the density at which the global ohmic L-mode energy confinement changes from the linear to the saturated regime.


Physics of Plasmas | 2006

Operation of Alcator C-Mod with high-Z plasma facing components and implications

B. Lipschultz; Y. Lin; M.L. Reinke; A. Hubbard; Ian H. Hutchinson; James H. Irby; B. LaBombard; E. Marmar; K. Marr; J. L. Terry; S.M. Wolfe; D.G. Whyte

Studies of potential plasma facing component (PFC) materials for a magnetic fusion reactor generally conclude that tungsten is the best choice due to its low tritium (T) retention, capability to handle high heat fluxes with low erosion, and robustness to nuclear damage and activation. ITER [F. Perkins et al., Nucl. Fusion 39, 2137 (1999)] may operate with all tungsten PFCs to provide the necessary operational experience for a reactor. Alcator C-Mod [I. Hutchinson et al., Phys. Plasmas 1, 1511 (1994)] operates with molybdenum (Mo) high-Z PFCs, which have very similar properties to tungsten. The experiments described herein have provided a unique comparison of operation with or without in situ boron coatings applied to the molybdenum PFCs; the latter are likely most relevant to ITER and beyond. ICRF-heated H-modes were readily achieved without boron coatings although the resultant enhancement in energy confinement was typically small (HITER,89∼1). Molybdenum concentrations, nMo∕ne, rise rapidly after the H-...


Physics of Plasmas | 2008

Lower hybrid current drive experiments on Alcator C-Mod: Comparison with theory and simulation

P.T. Bonoli; J. Ko; R.R. Parker; A.E. Schmidt; G. Wallace; John Wright; C. Fiore; A. Hubbard; James H. Irby; E. Marmar; M. Porkolab; D. Terry; S.M. Wolfe; S.J. Wukitch; J. R. Wilson; S. Scott; Ernest J. Valeo; C. K. Phillips; R. W. Harvey

Lower hybrid (LH) current drive experiments have been carried out on the Alcator C-Mod tokamak [I. H. Hutchinson et al., Phys. Plasmas 1, 1511 (1994)] using a radio-frequency system at 4.6GHz. Up to 900kW of LH power has been coupled and driven LH currents have been inferred from magnetic measurements by extrapolating to zero loop voltage, yielding an efficiency of neILHR0∕PLH≈2.5±0.2×1019(A∕W∕m2). We have simulated the LH current drive in these discharges using the combined ray tracing/three-dimensional (r,v⊥,v∥) Fokker–Planck code GENRAY-CQL3D (R. W. Harvey and M. McCoy, in Proceedings of the IAEA Technical Committee Meeting on Simulation and Modeling of Thermonuclear Plasmas, Montreal, Canada, 1992) and found similar current drive efficiencies. The simulated profiles of current density from CQL3D, including both ohmic plus LH drive have been found to be in good agreement with the measured current density from a motional Stark effect diagnostic. Measurements of nonthermal x-ray emission confirm the pres...

Collaboration


Dive into the S.M. Wolfe's collaboration.

Top Co-Authors

Avatar

Ian H. Hutchinson

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

M. Greenwald

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

E. Marmar

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

J. E. Rice

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

R. Granetz

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

James H. Irby

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

A. Hubbard

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

B. LaBombard

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

C. Fiore

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

J.W. Hughes

Massachusetts Institute of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge