S. Perrier
Centre national de la recherche scientifique
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by S. Perrier.
Nature | 2008
Franck Lefèvre; Jean-Loup Bertaux; R. Todd Clancy; Thérèse Encrenaz; Kelly Fast; Francois Forget; Sebastien Lebonnois; Franck Montmessin; S. Perrier
Hydrogen radicals are produced in the martian atmosphere by the photolysis of water vapour and subsequently initiate catalytic cycles that recycle carbon dioxide from its photolysis product carbon monoxide. These processes provide a qualitative explanation for the stability of the atmosphere of Mars, which contains 95 per cent carbon dioxide. Balancing carbon dioxide production and loss based on our current understanding of the gas-phase chemistry in the martian atmosphere has, however, proven to be difficult. Interactions between gaseous chemical species and ice cloud particles have been shown to be key factors in the loss of polar ozone observed in the Earth’s stratosphere, and may significantly perturb the chemistry of the Earth’s upper troposphere. Water-ice clouds are also commonly observed in the atmosphere of Mars and it has been suggested previously that heterogeneous chemistry could have an important impact on the composition of the martian atmosphere. Here we use a state-of-the-art general circulation model together with new observations of the martian ozone layer to show that model simulations that include chemical reactions occurring on ice clouds lead to much improved quantitative agreement with observed martian ozone levels in comparison with model simulations based on gas-phase chemistry alone. Ozone is readily destroyed by hydrogen radicals and is therefore a sensitive tracer of the chemistry that regulates the atmosphere of Mars. Our results suggest that heterogeneous chemistry on ice clouds plays an important role in controlling the stability and composition of the martian atmosphere.
Journal of Geophysical Research | 2006
Anna Fedorova; Oleg Korablev; Alexander V. Rodin; Alexander Kiselev; S. Perrier
Received 2 February 2006; revised 7 July 2006; accepted 11 July 2006; published 26 September 2006. [1] The near-IR channel of SPICAM experiment on Mars Express spacecraft is a 800-g acousto-optic tunable filter (AOTF)–based spectrometer operating in the spectral range of 1–1.7 mm with resolving power of � 2000. It was put aboard as an auxiliary channel dedicated to nadir H2O measurements in the 1.37-mm spectral band. This primary scientific goal of the experiment is achieved though successful water vapor retrievals, resulting in spatial and seasonal distributions of H2O. We present the results of H2O retrieval from January 2004 (Ls = 330� ) to December 2005 (Ls = 340� ), covering the entire Martian year. The seasonal trend of water vapor obtained by SPICAM IR is consistent with TES results and reveals disagreement with MAWD results related to south pole maximum. The main feature of SPICAM measurements is globally smaller water vapor abundance for all seasons and locations including polar regions, as compared to other data. The maximum abundance is 50–55 precipitable microns at the north pole and 13–16 precipitable microns (pr mm) at the south pole. The northern tropical maximum amounts to 12–15 pr mm. Possible reasons for the disagreements are discussed.
Journal of Geophysical Research | 2006
Sebastien Lebonnois; Eric Quémerais; Franck Montmessin; Franck Lefèvre; S. Perrier; F. Forget
[i] The ultraviolet spectrometer of the SPICAM instrument on board the European Mars Express mission has performed stellar occultations to probe the atmosphere. Vertical profiles of ozone are retrieved from inversion of transmission spectra in the altitude range 20-30 to 70 km. They are analyzed here as functions of latitude and season of the observations. These occultations have been monitored on the night side, from northern spring equinox (L s = 8°) to northern winter solstice (L s = 270°). The profiles show the presence of two ozone layers: (1) one located near the surface, the top of which is visible below 30 km altitude, and (2) one layer located in the altitude range 30 to 60 km, a feature that is highly variable with latitude and season. This layer is first seen after L s = 11°, and the ozone abundance at the peak tends to increase until L s ∼ 40°, when it stabilizes around 6-8 x 10 9 cm -3 . After southern winter solstice (L s ∼ 100°), the peak abundance starts decreasing again, and this ozone layer is no longer detected after L s ∼ 130°. A recent model (Lefevre et al., 2004) predicted the presence of these ozone layers, the altitude one being only present at night. Though the agreement between model and observations is quite good, this nocturnal altitude layer is present in SPICAM data over a less extended period than predicted. Though a possible role of heterogeneous chemistry is not excluded, this difference is probably linked to the seasonal evolution of the vertical distribution of water vapor.
Journal of Geophysical Research | 2006
Oleg Korablev; Anna Fedorova; D. Fonteyn; A. V. Stepanov; Yurii K. Kalinnikov; A. V. Kiselev; A. V. Grigoriev; V. Jegoulev; S. Perrier; E. Dimarellis; Jean-Pierre Dubois; Aurélie Reberac; E. Van Ransbeeck; B. Gondet; Franck Montmessin; Alexander V. Rodin
SPICAV IR, a part of SPICAV/SOIR suite on Venus Express, is a compact single pixel spectrometer for the spectral range of 0.65–1.7 mm based on acousto-optical tunable filter (AOTF) technology. SPICAV IR is derived from SPICAM IR operating on Mars Express, the first AOTF spectrometer in the deep space, and adapted for Venus atmosphere measurements. The spectrometer sequentially measures spectra of reflected solar radiation from Venus on the dayside and the emitted Venus radiation in spectral ‘‘windows’’ on the nightside, and works also in solar occultation mode. The spectral range is 0.65– 1.1 mm with spectral resolution of 7.8 cm � 1 , and 1–1.7 mm with spectral resolution of 5.2 cm � 1 .A description of this near-IR instrument, its calibration, in-flight performances, and the modes of operations on Venus’ orbit are presented. A brief overview of the science measurements is given: water vapor measurements in the mesosphere on the day-side and near surface on the nightside, mapping of the O2(a 1 Dg) emission at 1.27 mm, aerosol studies via polarization and scattering solar radiation at the day-side, and measurements of aerosol properties at the tops of the clouds in solar occultations.
Journal of Geophysical Research | 2006
Pascal Rannou; S. Perrier; Franck Montmessin; Oleg Korablev; Aurélie Reberac
[1] The UV detector of Spectroscopy for the Investigation of the Characteristics of the Atmosphere of Mars (SPICAM) on board Mars Express has measured several profiles of light scattered at the limb of Mars. In this paper we present 33 profiles taken between January 2004 and August 2005. Scattering of UV light at the limb of Mars is due to the molecules of the atmosphere, dust particles, and sometimes cloud particles which appear as detached layers above the extended dust layer. We have used a radiative transfer model to retrieve the haze and cloud properties. Rough estimate of the particle size shows that both cloud particles and dust particles above 20 km are in the range 10 to 100 nm. Such particles are much smaller than micron-sized dust particles previously observed in the lower atmosphere, generally from landers. Gravitational segregation is thought to be responsible for these differences in particle size between low and high atmosphere.
Cosmic Research | 2006
Anna Fedorova; Oleg Korablev; S. Perrier; J. L. Bertaux; Franck Lefèvre; A. V. Rodin; A. V. Kiselev
The SPICAM experiment onboard the Mars-Express spacecraft includes sounding the Martian atmosphere in the ultra-violet (118–320 nm) and near IR (1–1.7 μm) ranges. The infrared spectrometer operates in the range of 1–1.7 μm with a resolution of 3.5 cm−1 in the mode of nadir observations and solar and stellar occulations. This paper is devoted to analyzing the basic results of nadir observations of the infra-red SPICAM channel during the first Martian year of the instrument operation: from January 2004 to November 2005. One of the primary goals of SPICAM-IR is water vapor monitoring in the atmosphere of Mars in the band of 1.37 μm and ozone abundance determination from the day-time airglow of molecular oxygen O2(a1Δg) in the band of 1.27 μm. Simultaneous measurements of these minor constituents of the planet are necessary for understanding photochemical processes in the Martian atmosphere. The degree of their anticorrelation and a comparison with the results of photochemical modeling of the atmosphere will contribute to our knowledge of the Martian atmosphere stability.
Journal of Geophysical Research | 2006
Oleg Korablev; S. Perrier; Eric Quémerais; Franck Montmessin; François Leblanc; Sébastien Lebonnois; Patrice Rannou; Franck Lefèvre; F. Forget; Anna Fedorova; E. Dimarellis; A. Reberac; D. Fonteyn; Jean-Yves Chaufray; S. Guibert
Science | 2005
François Leblanc; S. Perrier; Eric Quémerais; Oleg Korablev; E. Dimarellis; Aurélie Reberac; F. Forget; Paul C. Simon; S. A. Stern; Bill R. Sandel
Icarus | 2006
Franck Montmessin; Eric Quémerais; Oleg Korablev; Pascal Rannou; Francois Forget; S. Perrier; Didier Fussen; Sebastien Lebonnois; Aurélie Reberac; E. Dimarellis
Journal of Geophysical Research | 2006
S. Perrier; Franck Lefèvre; Sebastien Lebonnois; Oleg Korablev; Anna Fedorova; Franck Montmessin