Sachhidh Kannan
New York University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Sachhidh Kannan.
IEEE Transactions on Nanotechnology | 2013
Sachhidh Kannan; Jeyavijayan Rajendran; Ramesh Karri; Ozgur Sinanoglu
Emerging nonvolatile memory (NVM) technologies, such as resistive random access memories (RRAM) and phase-change memories (PCM), are an attractive option for future memory architectures due to their nonvolatility, high density, and low-power operation. Notwithstanding these advantages, they are prone to high defect densities due to the nondeterministic nature of the nanoscale fabrication. We examine the fault models and propose an efficient testing technique to test crossbar-based NVMs. The typical approach to testing memories entails testing one memory element at a time. This is time consuming and does not scale for the dense, RRAM or PCM-based memories. We propose a testing scheme based on “sneak-path sensing” to efficiently detect faults in the memory. The testing scheme uses sneak paths inherent in crossbar memories, to test multiple memory elements at the same time, thereby reducing testing time. We designed the design-for-test support necessary to control the number of sneak paths that are concurrently enabled; this helps control the power consumed during test. The proposed scheme enables and leverages sneak paths during test mode, while still maintaining a sneak path free crossbar during normal operation.
international conference on vlsi design | 2013
Sachhidh Kannan; Jeyavijayan Rajendran; Ramesh Karri; Ozgur Sinanoglu
Memristors are an attractive option for use in future memory architectures due to their non-volatility, low power operation and compactness. Notwithstanding these advantages, memristors and memristor-based memories are prone to high defect densities due to the non-deterministic nature of nanoscale fabrication. As a first step, we will examine the defect mechanisms in memristors and develop efficient fault models. Next, the memory subsystem has to be tested. The typical approach to testing a memory subsystem entails testing one memory element at a time. This is time consuming and does not scale for dense, memristor-based memories. We propose an efficient testing technique to test memristor-based memories. The proposed scheme uses sneak-paths inherent in crossbar memories to test multiple memristors at the same time and thereby reduces the test time by ~32%.
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems | 2015
Sachhidh Kannan; Naghmeh Karimi; Ozgur Sinanoglu; Ramesh Karri
Emerging nonvolatile memory devices such as phase change memories and memristors are replacing SRAM and DRAM. However, nonvolatile main memories (NVMM) are susceptible to probing attacks even when powered down. This way, they may compromise sensitive data such as passwords and keys that reside in the NVMM. To eliminate this vulnerability, we propose sneak-path encryption (SPE), a hardware intrinsic encryption technique for memristor-based NVMMs. SPE is instruction set architecture independent and has minimal impact on performance. SPE exploits the physical parameters, such as sneak-paths in crossbar memories, to encrypt the data stored in a memristor-based NVMM. SPE is resilient to a number of attacks that may be performed on NVMMs. We use a cycle accurate simulator to evaluate the performance impact of SPE-based NVMM and compare against other security techniques. SPE can secure an NVMM with a ~1.3% performance overhead.
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems | 2015
Sachhidh Kannan; Naghmeh Karimi; Ramesh Karri; Ozgur Sinanoglu
Memristors are an attractive option for use in future memory architectures but are prone to high defect densities due to the nondeterministic nature of nanoscale fabrication. Several works discuss memristor fault models and testing. However, none of them considers the memristor as a multilevel cell (MLC). The ability of memristors to function as an MLC allows for extremely dense, low-power memories. Using a memristor as an MLC introduces fault mechanisms that cannot occur in typical two-level memory cells. In this paper, we develop fault models for memristor-based MLC crossbars. The typical approach to testing a memory subsystem entails testing one memory cell at a time. However, this testing strategy is time consuming and does not scale for dense, memristor memories. We propose an efficient testing technique that exploits sneak-paths inherent in crossbar memories to test several memory cells simultaneously. In this paper, we integrate solutions for detecting and locating faults in memristors. We develop a power aware built-in self-test solution to detect these faults. We also propose a hybrid diagnosis scheme that uses a combination of sneak-path and March testing to reduce diagnosis time. The proposed schemes enable and leverage sneak-paths during fault detection and diagnosis modes, while disabling sneak-paths during normal operation. The proposed hybrid scheme reduces fault detection and diagnosis time by 24.69% and 28%, respectively, compared to traditional March tests.
vlsi test symposium | 2014
Sachhidh Kannan; Naghmeh Karimi; Ramesh Karri; Ozgur Sinanoglu
Memristors are an attractive option for use in future memory architectures due to their non-volatility, high density and low power operation. Notwithstanding these advantages, memristors and memristor-based memories are prone to high defect densities due to the non-deterministic nature of nanoscale fabrication. The typical approach to fault detection and diagnosis in memories entails testing one memory cell at a time. This is time consuming and does not scale for the dense, memristor-based memories. In this paper, we integrate solutions for detecting and locating faults in memristors, and ensure post-silicon recovery from memristor failures. We propose a hybrid diagnosis scheme that exploits sneak-paths inherent in crossbar memories, and uses March testing to test and diagnose multiple memory cells simultaneously, thereby reducing test time. We also provide a repair mechanism that prevents faults in the memory from being activated. The proposed schemes enable and leverage sneak paths during fault detection and diagnosis modes, while still maintaining a sneak-path free crossbar during normal operation. The proposed hybrid scheme reduces fault detection and diagnosis time by ~44%, compared to traditional March tests, and repairs the faulty cell with minimal overhead.
Microelectronics Journal | 2011
Aamir Zia; Sachhidh Kannan; H. Jonathan Chao; Garrett S. Rose
With an increasing number of processors forming many-core chip multiprocessors (CMP), there exists a need for easily scalable, high-performance and low-power intra-chip communication infrastructure for emerging systems. In CMPs with hundreds of processing elements, 3D integration can be utilized to shorten long wires forming communication links. In this paper, we propose a Clos network-on-chip (CNOC) in conjunction with 3D integration as a viable network topology for many core CMPs. The primary benefit of 3D CNOC is scalability and a clear upper bound on power dissipation. We present the architectural and physical design of 3D CNOC and compare its performance with several other topologies. Comparisons are made among several topologies (fat tree, flattened butterfly, mesh and Clos) showing the power consumption of a 3D CNOC increases only minimally as the network size is scaled from 64 to 512 nodes relative to the other topologies. Furthermore, in a 512-node system, 3D CNOC consumes about 15% less average power than any other topology. We also compare 3D partitioning strategies for these topologies and discuss their effect on wire delay and the number of through-silicon vias.
ieee international newcas conference | 2010
Aamir Zia; Sachhidh Kannan; Garrett S. Rose; H. Jonathan Chao
In order to accommodate hundreds of processing elements forming many-core chip multiprocessors (CMP), there is a growing need for easily scalable, high-performance and low-power interconnect infrastructure. In this paper, we propose using 3D integrated CLOS network-on-chip (CNOC) to achieve these goals. We present the design of a 512-node 3D CNOC and evaluate its power consumption. We compare the power consumption of 3D CNOC with a planar CNOC implementation and with 2D and 3D mesh topologies.
design automation conference | 2014
Sachhidh Kannan; Naghmeh Karimi; Ozgur Sinanoglu
Non-volatile memory devices such as phase change memories and memristors are promising alternatives to SRAM and DRAM main memories as they provide higher density and improved energy efficiency. However, non-volatile main memories (NVMM) introduce security vulnerabilities. Sensitive data such as passwords and keys residing in the NVMM will persist and can be probed after power down. We propose sneak-path encryption (SPE), for memristor-based NVMM. SPE exploits the physical parameters, multi-level cell (MLC) capability and the sneak paths in cross-bar memories to encrypt the data stored in memristor-based NVMM. We investigate three attacks on NVMMs and show the resilience of SPE against them. We use a cycle accurate simulator to evaluate the security and performance impact of SPE based NVMM. SPE can secure the NVMM with a latency of 16 cycles and ~1.5% performance overhead.
international conference on computer design | 2013
Sachhidh Kannan; Ramesh Karri; Ozgur Sinanoglu
Memristors are an attractive option for use in future memory architectures due to their non-volatility, low power operation, compactness and ability to store multiple bits in a single cell. Notwithstanding these advantages, memristors and memristor-based memories are prone to high defect densities due to the non-deterministic nature of nanoscale fabrication. As a first step, we will examine the defect mechanisms in multi-level cells (MLC) using memristors and develop efficient fault models. We will also investigate efficient test techniques for multi-level memristor based memories. The typical approach to testing a memory subsystem entails testing one memory cell at a time. This is time consuming and does not scale for dense, memristor-based memories. We propose an efficient testing technique to test memristor-based memories. The proposed scheme uses sneak paths inherent in crossbar memories to test multiple memristors at the same time and thereby reduces the test time by 27%.
international conference on computer design | 2012
Sachhidh Kannan; Jeyavijayan Rajendran; Ramesh Karri; Ozgur Sinanoglu
Emerging Resistive Random Access Memories (RRAM) devices are an attractive option for future memory architectures due to their low-power and high density. However, their capacity is limited by sneak paths and the sensitivity of the sense amplifiers (SA). We develop a framework to maximize the capacity of RRAM memories by modeling the interactions between memory capacity, sneak paths, device parameters, and the sense amplifier. The framework explores the design space of the memory by considering different read/write mechanisms, sneak path elimination techniques, and multi-level storage.