Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yuwen Li is active.

Publication


Featured researches published by Yuwen Li.


Journal of Biological Chemistry | 2008

Regulation of 3-Phosphoinositide-dependent Protein Kinase-1 (PDK1) by Src Involves Tyrosine Phosphorylation of PDK1 and Src Homology 2 Domain Binding

Keum-Jin Yang; Sanghee Shin; Longzhen Piao; Eulsoon Shin; Yuwen Li; Kyeong Ah Park; Hee Sun Byun; Minho Won; Jang-Hee Hong; Gi Ryang Kweon; Gang Min Hur; Jeong Ho Seok; Taehoon Chun; Derek P. Brazil; Brian Arthur Hemmings; Jongsun Park

3-Phosphoinositide-dependent protein kinase-1 (PDK1) appears to play a central regulatory role in many cell signalings between phosphoinositide-3 kinase and various intracellular serine/threonine kinases. In resting cells, PDK1 is known to be constitutively active and is further activated by tyrosine phosphorylation (Tyr9 and Tyr373/376) following the treatment of the cell with insulin or pervanadate. However, little is known about the mechanisms for this additional activation of PDK1. Here, we report that the SH2 domain of Src, Crk, and GAP recognized tyrosine-phosphorylated PDK1 in vitro. Destabilization of PDK1 induced by geldanamycin (a Hsp90 inhibitor) was partially blocked in HEK 293 cells expressing PDK1-Y9F. Co-expression of Hsp90 enhanced PDK1-Src complex formation and led to further increased PDK1 activity toward PKB and SGK. Immunohistochemical analysis with anti-phospho-Tyr9 antibodies showed that the level of Tyr9 phosphorylation was markedly increased in tumor samples compared with normal. Taken together, these data suggest that phosphorylation of PDK1 on Tyr9, distinct from Tyr373/376, is important for PDK1/Src complex formation, leading to PDK1 activation. Furthermore, Tyr9 phosphorylation is critical for the stabilization of both PDK1 and the PDK1/Src complex via Hsp90-mediated protection of PDK1 degradation.


Journal of Biological Chemistry | 2009

DNA-dependent protein kinase-mediated phosphorylation of protein kinase B requires a specific recognition sequence in the C-terminal hydrophobic motif.

Jongsun Park; Jianhua Feng; Yuwen Li; Ola Hammarsten; Derek P. Brazil; Brian A. Hemmings

DNA-dependent protein kinase (DNA-PK) has been implicated in a variety of nuclear processes including DNA double strand break repair, V(D)J recombination, and transcription. A recent study showed that DNA-PK is responsible for Ser-473 phosphorylation in the hydrophobic motif of protein kinase B (PKB/Akt) in genotoxic-stressed cells, suggesting a novel role for DNA-PK in cell signaling. Here, we report that DNA-PK activity toward PKB peptides is impaired in DNA-PK knock-out mouse embryonic fibroblast cells when compared with wild type. In addition, human glioblastoma cells expressing a mutant form of DNA-PK (M059J) displayed a lower DNA-PK activity when compared with glioblastoma cells expressing wild-type DNA-PK (M059K) when PKB peptide substrates were tested. DNA-PK preferentially phosphorylated PKB on Ser-473 when compared with its known in vitro substrate, p53. A consensus hydrophobic amino acid surrounding the Ser-473 phospho-acceptor site in PKB containing amino acids Phe at position +1 and +4 and Tyr at position –1 are critical for DNA-PK activity. Thus, these data define the specificity of DNA-PK action as a Ser-473 kinase for PKB in DNA repair signaling.


Cancer Research | 2009

Association of LETM1 and MRPL36 Contributes to the Regulation of Mitochondrial ATP Production and Necrotic Cell Death

Longzhen Piao; Yuwen Li; Soung Jung Kim; Hee Sun Byun; Song Mei Huang; Soon-Kyung Hwang; Keum-Jin Yang; Kyeong Ah Park; Minho Won; Jang-Hee Hong; Gang Min Hur; Jeong Ho Seok; Minho Shong; Myung-Haing Cho; Derek P. Brazil; Brian A. Hemmings; Jongsun Park

Leucine zipper/EF hand-containing transmembrane-1 (LETM1) is a mitochondrial inner membrane protein that was first identified in Wolf-Hirschhorn syndrome, and was deleted in nearly all patients with the syndrome. LETM1 encodes for the human homologue of yeast Mdm38p, which is a mitochondria-shaping protein of unclear function. Here, we describe LETM1-mediated regulation of mitochondrial ATP production and biogenesis. We show that LETM1 overexpression can induce necrotic cell death in HeLa cells, in which LETM1 reduces mitochondrial biogenesis and ATP production. LETM1 acts as an anchor protein and associates with mitochondrial ribosome protein L36. Adenovirus-mediated overexpression of LETM1 reduced mitochondrial mass and expression of many mitochondrial proteins. LETM1-mediated inhibition of mitochondrial biogenesis enhanced glycolytic ATP supply and activated protein kinase B activity and cell survival signaling. The expression levels of LETM1 were significantly increased in multiple human cancer tissues compared with normals. These data suggest that LETM1 serves as an anchor protein for complex formation with the mitochondrial ribosome and regulates mitochondrial biogenesis. The increased expression of LETM1 in human cancer suggests that dysregulation of LETM1 is a key feature of tumorigenesis.


Nature Communications | 2013

PHF20 regulates NF-κB signalling by disrupting recruitment of PP2A to p65

Tiejun Zhang; Kyeong Ah Park; Yuwen Li; Hee Sun Byun; Juhee Jeon; Yoonjung Lee; Jang Hee Hong; Jin-Man Kim; Song Mei Huang; Seung Won Choi; Seon Hwan Kim; Kyung Cheol Sohn; Hyunju Ro; Ji Hoon Lee; Tao Lu; George R. Stark; Han-Ming Shen; Zheng Gang Liu; Jongsun Park; Gang Min Hur

Constitutive NF-κB activation in cancer cells is caused by defects in the signalling network responsible for terminating the NF-κB response. Here we report that plant homeodomain finger protein 20 (PHF20) maintains NF-κB in an active state in the nucleus by inhibiting the interaction between PP2A and p65. We show that PHF20 induces canonical NF-κB signalling by increasing the DNA-binding activity of NF-κB subunit p65. In PHF20 overexpressing cells, the termination of tumour necrosis factor-induced p65 phosphorylation is impaired whereas upstream signalling events triggered by tumour necrosis factor are unaffected. This effect strictly depends on the interaction between PHF20 and methylated lysine residues of p65, which hinders recruitment of PP2A to p65, thereby maintaining p65 in a phosphorylated state. We further show that PHF20 levels correlate with p65 phosphorylation levels in human glioma specimens. Our work identifies PHF20 as a novel regulator of NF-κB activation and suggests that elevated expression of PHF20 may drive constitutive NF-κB activation in some cancers.


World Journal of Biological Chemistry | 2010

Multiple implications of 3-phosphoinositide-dependent protein kinase 1 in human cancer

Yuwen Li; Keum-Jin Yang; Jongsun Park

3-phosphoinositide-dependent protein kinase-1 (PDK1) is a central mediator of cellular signaling between phosphoinositide-3 kinase and various intracellular serine/threonine kinases, including protein kinase B, p70 ribosomal S6 kinase, serum and glucocorticoid-inducible kinase, and protein kinase C. PDK1 activates members of the AGC family of protein kinases by phosphorylating serine/threonine residues in the activation loop. Here, we review the regulatory mechanisms of PDK1 and its roles in cancer. PDK1 is activated by autophosphorylation in the activation loop and other serine residues, as well as by phosphorylation of Tyr-9 and Tyr-373/376. Src appears to recognize PDK1 following tyrosine phosphorylation. The role of heat shock protein 90 in regulating PDK1 stability and PDK1-Src complex formation are also discussed. Furthermore, we summarize the subcellular distribution of PDK1. Finally, an important role for PDK1 in cancer chemotherapy is proposed. In conclusion, a better understanding of its molecular regulatory mechanisms in various signaling pathways will help to explain how PDK1 acts as an oncogenic kinase in various cancers, and will contribute to the development of novel cancer chemotherapies.


Cellular Signalling | 2013

PKB-mediated PHF20 phosphorylation on Ser291 is required for p53 function in DNA damage

Yuwen Li; Jisoo Park; Longzhen Piao; Gyeyeong Kong; Yongbaek Kim; Kyeong Ah Park; Tiejun Zhang; Jang-Hee Hong; Gang Min Hur; Jeong Ho Seok; Seung-Won Choi; Byong Chul Yoo; Brian A. Hemmings; Derek P. Brazil; Seon-Hwan Kim; Jongsun Park

PHD finger protein 20 (PHF20) is a transcription factor, which was originally identified in glioma patients. PHF20 appears to be a novel antigen in glioma, and has also termed glioma-expressed antigen 2. PHF20 is thought to contribute to the development of cancers, including glioblastoma, lung cancer, colon cancer and ovarian cancer. However, little is known about the function of PHF20 in various cancers. Here we report that PHF20 contains two consensus sites for protein kinase B (PKB) phosphorylation (RxRxxS/T). PKB can directly phosphorylate PHF20 on Ser291 in vitro and in vivo. It has been shown that PKB participates in the tumor suppressor p53 regulated gene expression program and has a direct effect on p21 regulation after DNA damage. UV-induced DNA damage results in accumulation of p53 and PKB activation. Interestingly, PKB-mediated PHF20 phosphorylation led to an inhibition of p53 induction following UV treatment, leading to the reduction of p21 transcriptional activity. Using anti PHF20 and anti pPKB (S473) antibodies, these events were mapped in various human cancer tissues. Taken together, these data suggest that PHF20 is a novel substrate for PKB and its phosphorylation by PKB plays an important role in tumorigenesis via regulating of p53 mediated signaling.


Cellular Signalling | 2009

Regulation of OPA1-mediated mitochondrial fusion by leucine zipper/EF-hand-containing transmembrane protein-1 plays a role in apoptosis

Longzhen Piao; Yuwen Li; Soung Jung Kim; Kyung-Cheol Sohn; Keum-Jin Yang; Kyeong Ah Park; Hee Sun Byun; Minho Won; Jang-Hee Hong; Gang Min Hur; Jeong Ho Seok; Minho Shong; Ragna Sack; Derek P. Brazil; Brian A. Hemmings; Jongsun Park

Carboxyl-terminal modulator protein (CTMP) is a tumor suppressor-like binding partner of Protein kinase B (PKB/Akt) that negative regulates this kinase. In the course of our recent work, we identified that CTMP is consistently associated with leucine zipper/EF-hand-containing transmembrane-1 (LETM1). Here, we report that adenovirus-LETM1 increased the sensitivity of HeLa cells to apoptosis, induced by either staurosporine or actinomycin D. As shown previously, LETM1 localized to the inner mitochondrial membrane. Electron-microscopy analysis of adenovirus-LETM1 transduced cells revealed that mitochondrial cristae were swollen in these cells, a phenotype similar to that observed in optic atrophy type-1 (OPA1)-ablated cells. OPA1 cleavage was increased in LETM1-overexpressing cells, and this phenotype was reversed by overexpression of OPA1 variant-7, a cleavage resistant form of OPA1. Taken together, these data suggest that LETM1 is a novel binding partner for CTMP that may play an important role in mitochondrial fragmentation via OPA1-cleavage.


BMC Cell Biology | 2009

Heat shock protein 70-mediated sensitization of cells to apoptosis by Carboxyl-Terminal Modulator Protein

Longzhen Piao; Yuwen Li; Keum Jin Yang; Kyeong Ah Park; Hee Sun Byun; Minho Won; Jang-Hee Hong; Jeong Lan Kim; Gi Ryang Kweon; Gang Min Hur; Jeong Ho Seok; Jae Youl Cho; Taehoon Chun; Daniel Hess; Ragna Sack; Sauveur Michel Maira; Derek P. Brazil; Brian A. Hemmings; Jongsun Park

BackgroundThe serine/threonine protein kinase B (PKB/Akt) is involved in insulin signaling, cellular survival, and transformation. Carboxyl-terminal modulator protein (CTMP) has been identified as a novel PKB binding partner in a yeast two-hybrid screen, and appears to be a negative PKB regulator with tumor suppressor-like properties. In the present study we investigate novel mechanisms by which CTMP plays a role in apoptosis process.ResultsCTMP is localized to mitochondria. Furthermore, CTMP becomes phosphorylated following the treatment of cells with pervanadate, an insulin-mimetic. Two serine residues (Ser37 and Ser38) were identified as novel in vivo phosphorylation sites of CTMP. Association of CTMP and heat shock protein 70 (Hsp70) inhibits the formation of complexes containing apoptotic protease activating factor 1 and Hsp70. Overexpression of CTMP increased the sensitivity of cells to apoptosis, most likely due to the inhibition of Hsp70 function.ConclusionOur data suggest that phosphorylation on Ser37/Ser38 of CTMP is important for the prevention of mitochondrial localization of CTMP, eventually leading to cell death by binding to Hsp70. In addition to its role in PKB inhibition, CTMP may therefore play a key role in mitochondria-mediated apoptosis by localizing to mitochondria.


Cellular Signalling | 2014

β-Lapachone alleviates alcoholic fatty liver disease in rats.

Sanghee Shin; Jisoo Park; Yuwen Li; Ki Nam Min; Gyeyeong Kong; Gang Min Hur; Jim Man Kim; Minho Shong; Min-Suk Jung; Jong Kook Park; Kyeong-Hoon Jeong; Myoung Gyu Park; Tae Hwan Kwak; Derek P. Brazil

UNLABELLED Alcohol-induced liver injury is the most common liver disease in which fatty acid metabolism is altered. It is thought that altered NAD(+)/NADH redox potential by alcohol in the liver causes fatty liver by inhibiting fatty acid oxidation and the activity of tricarboxylic acid cycle reactions. β-Lapachone (βL), a naturally occurring quinone, has been shown to stimulate fatty acid oxidation in an obese mouse model by activating adenosine monophosphate-activated protein kinase (AMPK). In this report, we clearly show that βL reduced alcohol-induced hepatic steatosis and induced fatty acid oxidizing capacity in ethanol-fed rats. βL treatment markedly decreased hepatic lipids while serum levels of lipids and lipoproteins were increased in rats fed ethanol-containing liquid diets with βL administration. Furthermore, inhibition of lipolysis, enhancement of lipid mobilization to mitochondria and upregulation of mitochondrial β-oxidation activity in the soleus muscle were observed in ethanol/βL-treated animals compared to the ethanol-fed rats. In addition, the activity of alcohol dehydrogenase, but not aldehyde dehydrogenase, was significantly increased in rats fed βL diets. βL-mediated modulation of NAD(+)/NADH ratio led to the activation of AMPK signaling in these animals. CONCLUSION Our results suggest that improvement of fatty liver by βL administration is mediated by the upregulation of apoB100 synthesis and lipid mobilization from the liver as well as the direct involvement of βL on NAD(+)/NADH ratio changes, resulting in the activation of AMPK signaling and PPARα-mediated β-oxidation. Therefore, βL-mediated alteration of NAD(+)/NADH redox potential may be of potential therapeutic benefit in the clinical setting.


International Journal of Molecular Medicine | 2014

SOCS3 and SOCS6 are required for the risperidone-mediated inhibition of insulin and leptin signaling in neuroblastoma cells

Longzhen Piao; Jisoo Park; Yuwen Li; Sanghee Shin; Soyeon Shin; Gyeyeong Kong; Robin Shrestha; Quangdon Tran; Gang Min Hur; Jeong-Lan Kim; Jongsun Park

Antipsychotic drugs are regularly used for the treatment of many types of psychiatric disorders. The administration of second-generation antipsychotics is often associated with weight gain and the development of diabetes mellitus; however, the molecular mechanisms underlying the effects of these drugs remain poorly understood. Leptin and insulin play key roles in the regulation of energy balance and glucose homeostasis, and resistance to the actions of these hormones can occur with obesity and inflammation, resulting in the pathogenesis of obesity and type 2 diabetes. In this study, the effects of risperidone on the insulin-induced protein kinase B (PKB) phosphorylation and leptin-stimulated signal transducer and activator of transcription 3 (STAT3) phosphorylation were investigated in the human SH-SY5Y neuroblastoma cell line. The treatment of these cells with risperidone induced the activation of extracellular signal-related kinase (ERK) by cellular cyclic adenosine 3-monophosphate (cAMP)-dependent protein kinase (also known as protein kinase A; PKA) and the mechanisms involved include the induction of suppressor of cytokine signaling 3 (SOCS3) and suppressor of cytokine signaling 6 (SOCS6) expression. The risperidone-induced ERK activation induced an upregulation of SOCS3 and SOCS6 mRNA expression levels. Taken together, these results suggest that risperidone modulates SOCS3 and SOCS6 expression through adenylate cyclase-mediated ERK activation, which, in turn, leads to an inhibition of insulin-induced PKB phosphorylation and leptin-stimulated STAT3 phosphorylation. Eventually, these effects result in excessive body weight gain due to the inhibition of both the leptin and insulin signaling pathways.

Collaboration


Dive into the Yuwen Li's collaboration.

Top Co-Authors

Avatar

Gang Min Hur

Chungnam National University

View shared research outputs
Top Co-Authors

Avatar

Jongsun Park

Chungnam National University

View shared research outputs
Top Co-Authors

Avatar

Hee Sun Byun

Chungnam National University

View shared research outputs
Top Co-Authors

Avatar

Jeong Ho Seok

Chungnam National University

View shared research outputs
Top Co-Authors

Avatar

Longzhen Piao

Chungnam National University

View shared research outputs
Top Co-Authors

Avatar

Derek P. Brazil

Queen's University Belfast

View shared research outputs
Top Co-Authors

Avatar

Keum-Jin Yang

Chungnam National University

View shared research outputs
Top Co-Authors

Avatar

Kyeong Ah Park

Chungnam National University

View shared research outputs
Top Co-Authors

Avatar

Minho Won

Chungnam National University

View shared research outputs
Top Co-Authors

Avatar

Jang-Hee Hong

Chungnam National University

View shared research outputs
Researchain Logo
Decentralizing Knowledge