Sandra Casimiro
Instituto de Medicina Molecular
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Sandra Casimiro.
Molecular and Cellular Endocrinology | 2009
Sandra Casimiro; Theresa A. Guise; John M. Chirgwin
Bone metastatic disease is a late-stage event of many common cancers, such as those of prostate and breast. It is incurable and causes severe morbidity. Tumor and bone interact in a vicious cycle, where tumor-secreted factors stimulate bone cells, which in turn release growth factors and cytokines that act back on the tumor cells. Within the vicious cycle are many potential therapeutic targets for novel treatment of bone metastatic disease. Therapeutic strategies can be oriented to inhibit bone cells (osteoclasts and osteoblasts) or tumor responses to factors enriched in the bone microenvironment. Many publications, especially from pre-clinical animal models, show that this approach, especially combination treatments, can reduce tumor burden and tumor-derived bone lesions. This supports a novel paradigm: tumor growth can be effectively inhibited by targeting the bone and its microenvironment rather than the tumor itself alone.
Cancer Research | 2013
Suresh B. Pakala; Suresh K. Rayala; Rui-An Wang; Kazufumi Ohshiro; Prakriti Mudvari; Sirigiri Divijendra Natha Reddy; Yi Zheng; Ricardo Pires; Sandra Casimiro; M. Radhakrishna Pillai; Luis Costa; Rakesh K. Kumar
Overexpression of the prometastatic chromatin modifier protein metastasis tumor antigen 1 (MTA1) in human cancer contributes to tumor aggressiveness, but the role of endogenous MTA1 in cancer has not been explored. Here, we report the effects of selective genetic depletion of MTA1 in a physiologically relevant spontaneous mouse model of breast cancer pulmonary metastasis. We found that MTA1 acts as a mandatory modifier of breast-to-lung metastasis without effects on primary tumor formation. The underlying mechanism involved MTA1-dependent stimulation of STAT3 transcription through action on the MTA1/STAT3/Pol II coactivator complex, and, in turn, on the expression and functions of STAT3 target genes including Twist1. Accordingly, we documented a positive correlation between levels of MTA1 and STAT3 in publicly available breast cancer data sets. Together, our findings reveal an essential modifying role of the physiologic level of MTA1 in supporting pulmonary metastasis of breast cancer.
PLOS ONE | 2013
Sandra Casimiro; Khalid S. Mohammad; Ricardo Pires; Joana Tato-Costa; Irina Alho; Rui Teixeira; Antônio Freire Carvalho; Sofia Ribeiro; Allan Lipton; Theresa A. Guise; Luis Costa
The osteolytic nature of bone metastasis results from a tumor-driven increased bone resorption. Bone remodeling is orchestrated by the molecular triad RANK-RANKL-OPG. This process is dysregulated in bone metastases, mostly via induction of RANKL by tumor-derived factors. These factors increase expression of RANKL, which induce osteoclast formation, function, and survival, thereby increasing bone resorption. RANK is unexpectedly expressed by cancer cells, and the activation of RANKL-RANK pathway correlates with an increased invasive phenotype. To investigate the interaction between RANK expression in human breast and prostate cancer cells and their pro-metastatic phenotype we analyzed the activation of RANKL-RANK pathway and its effects on cell migration, invasion, gene expression in vitro, and osteolysis-inducing ability in vivo. RANKL activates kinase signaling pathways, stimulates cell migration, increases cell invasion, and up-regulates MMP-1 expression. In vivo, MMP-1 knockdown resulted in smaller x-ray osteolytic lesions and osteoclastogenesis, and decreased tumor burden. Therefore, RANKL inhibition in bone metastatic disease may decrease the levels of the osteoclastogenesis inducer MMP-1, contributing to a better clinical outcome.
Nature Reviews Urology | 2015
Jean-Jacques Body; Sandra Casimiro; Luis Costa
Bone metastases develop in most patients with metastatic castration-resistant prostate cancer (mCRPC). They affect the structural integrity of bone, manifesting as pain and skeletal-related events (SREs), and are the primary cause of patient disability, reduced quality of life (QOL) and death. Understanding the pathophysiology of bone metastases resulted in the development of agents that improve clinical outcome, suggesting that managing both the systemic disease and associated bone events is important. Historically, the treatment of CRPC bone metastases with early radiopharmaceuticals and external beam radiation therapy was largely supportive; however, now, zoledronic acid and denosumab are integral to the therapeutic strategy for mCRPC. These agents substantially reduce skeletal morbidity and improve patient QOL. Radium-223 dichloride is the first bone-targeting agent to show improved survival and reduced pain and symptomatic skeletal events in patients with mCRPC without visceral disease. Five other systemic agents are currently approved for use in mCRPC based on their ability to improve survival. These include the cytotoxic drugs docetaxel and cabazitaxel, the hormone-based therapies, abiraterone and enzalutamide, and the immunotherapeutic vaccine sipuleucel-T. Abiraterone and enzalutamide are able to reduce SREs and improve survival in this setting. Novel agents targeting tumour and bone cells are under clinical development.
Scientific Reports | 2013
Anelia Horvath; Suresh B. Pakala; Prakriti Mudvari; Sirigiri Divijendra Natha Reddy; Kazufumi Ohshiro; Sandra Casimiro; Ricardo Pires; Suzanne A. W. Fuqua; Masakazu Toi; Luis Costa; Sujit S. Nair; Saraswati Sukumar; Rakesh Kumar
Using RNA sequencing of triple-negative breast cancer (TNBC), non-TBNC and HER2-positive breast cancer sub-types, here we report novel expressed variants, allelic prevalence and abundance, and coexpression with other variation, and splicing signatures. To reveal the most prevalent variant alleles, we overlaid our findings with cancer- and population-based datasets and validated a subset of novel variants of cancer-related genes: ESRP2, GBP1, TPP1, MAD2L1BP, GLUD2 and SLC30A8. As a proof-of-principle, we demonstrated that a rare substitution in the splicing coordinator ESRP2 (R353Q) impairs its ability to bind to its substrate FGFR2 pre-mRNA. In addition, we describe novel SNPs and INDELs in cancer relevant genes with no prior reported association of point mutations with cancer, such as MTAP and MAGED1. For the first time, this study illustrates the power of RNA-sequencing in revealing the variation landscape of breast transcriptome and exemplifies analytical strategies to search regulatory interactions among cancer relevant molecules.
Clinical & Experimental Metastasis | 2012
Sandra Casimiro; Inês Vaz Luís; Afonso Fernandes; Ricardo Pires; Andreia Pinto; António Gouveia; António F. Francisco; José Portela; Lurdes Correia; Luis Costa
Bone is a major target for metastases in the most frequent solid tumors, which result in severe complications and are a major cause of pain. A bone metastasis gene expression signature was identified using human breast cancer cells in a mouse model. The bone metastasis-related genes encode secretory and cell surface proteins implicated in bone-homing (CXCR4), angiogenesis (CTGF and FGF5), invasion (MMP-1 and ADAMTS1), and osteoclast recruitment (IL11). This signature superimposes on the 70-gene poor prognosis gene expression signature for breast cancer, and only ADAMTS1, CTGF and IL11 were found to be overexpressed in human primary breast cancers with bone relapse. We analyzed the expression of the six bone metastasis-related genes in bone metastases from patients with different types of solid tumors, to assess its relevance in human clinical samples. MMP-1, CXCR4, FGF5 and CTGF were found to be overexpressed in tumor cells of human bone metastases when compared to a human normal epithelial cell line. All the analyzed genes were overexpressed in the tumor cells of breast cancer bone metastases when compared to normal breast tissue. We did not detect any differences between the expression of these genes in bone metastases from breast cancer or from other types of solid tumors. Importantly, there was a significant correlation between the expressions of IL11/CTGF, IL11/ADAMTS1, CTGF/CXCR4, CTGF/ADAMTS1, and MMP-1/ADAMTS1, supporting the cooperative function of these proteins in the bone microenvironment, and the potential functional role of these genes in the establishment of bone metastases in vivo.
Cancer Biotherapy and Radiopharmaceuticals | 2009
Rute F. Vitor; Teresa Esteves; Fernanda Marques; Paula D. Raposinho; António Paulo; Sebastião Rodrigues; José Rueff; Sandra Casimiro; Luis Costa; Isabel Santos
Different pyrazolyl-diamine ligands bearing anthracenyl or anthrapyrazole functionalities as DNA-binding groups, at different positions of the chelator framework, were labeled with the fac-[(99m)Tc(CO)(3)](+) core. The resulting complexes, 1-4, are highly stable in vitro under physiologic conditions; all of them have been identified by high-performance liquid chromatography comparison with the Re congeners, with the exception of 3, that is anchored by an anthrapyrazole diamine ligand. Aiming to assess the ability of these complexes to target the cell nucleus and to induce enhanced cell death by effect of the Auger electrons emitted by (99m)Tc, the intracellular distribution and radiotoxicity of 1-4 were evaluated by using B16F1 murine melanoma cells. The radiotoxic effects depend very much on the position used to introduce the DNA-binding group and are well correlated with the nuclear uptake of the compounds. Complex 2, having the anthracenyl substituent at the 4-position of the pyrazolyl ring, rapidly entered the cells and accumulated inside the nucleus, exhibiting the highest radiotoxic effects. This compound induced an apoptotic cellular outcome, and its enhanced radiotoxic effects were certainly due to the Auger electrons emitted by the radiometal in close proximity to DNA.
bonekey Reports | 2015
Arlindo R. Ferreira; Irina Alho; Sandra Casimiro; Luis Costa
Bone metastasis is a frequent finding in the natural history of several types of cancers. However, its anticipated risk, diagnosis and response to therapy are still challenging to assess in clinical practice. Markers of bone metabolism are biochemical by-products that provide insight into the tumor-bone interaction, with potential to enhance the clinical management of patients with bone metastases. In fact, these markers had a cornerstone role in the development of bone-targeted agents; however, its translation to routine practice is still unclear, as reflected by current international guidelines. In this review, we aimed to capture several of the research and clinical translational challenges regarding the use of bone metabolism markers that we consider relevant for future research in bone metastasis.
Journal of Applied Microbiology | 2004
Sandra Casimiro; M. Moura; Líbia Zé-Zé; Rogério Tenreiro; António A. Monteiro
Aims: The purpose of the study was to characterize the internal transcribed spacer (ITS) regions of Peronospora parasitica (crucifer downy mildew) in order to evaluate their potential as molecular markers for pathogen identification.
OncoTargets and Therapy | 2012
Isabel Fernandes; Teresa R. Pacheco; Adília Costa; Ana Cristina Santos; Ana R Fernandes; Mara Santos; António G. Oliveira; Sandra Casimiro; António Quintela; Afonso Fernandes; Madalena Ramos; Luis Costa
Introduction: Somatostatin analogs (SSAs) are used as part of standard treatment for advanced neuroendocrine tumors (NETs). The mechanisms behind the antiproliferative action of SSAs remain largely unknown, but a connection with the mammalian target of rapamycin (mTOR) signaling pathway has been suggested. Our purpose was to evaluate the activation status of the AKT/mTOR pathway in advanced metastatic NETs and identify biomarkers of response to SSA therapy. Patients and methods: Expression of phosphatase and tensin homolog (PTEN), phosphorylated (p)-AKT(Ser473), and p-S6(Ser240/244) was evaluated using immunohistochemistry in archival paraffin samples from 23 patients. Expression levels were correlated with clinicopathological parameters and progression-free survival under treatment with SSAs. Results: A positive association between p-AKT and p-S6 expression was identified (P = 0.01) and higher expression of both markers was observed in pancreatic NETs. AKT/mTOR activation was observed without the loss of PTEN expression. Tumors showing AKT/mTOR signaling activation progressed faster when treated with SSAs: higher expression of p-AKT or p-S6 predicted a median progression-free survival of 1 month vs 26.5 months for lower expression (P = 0.02). Conclusion: Constitutive activation of the AKT/mTOR pathway was associated with shorter time-to-progression in patients undergoing treatment with SSAs. Larger case series are needed to validate whether p-AKT(Ser473) and p-S6(Ser240/244) can be used as prognostic markers of response to therapy with SSAs.