Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sandro Carniel is active.

Publication


Featured researches published by Sandro Carniel.


Eos, Transactions American Geophysical Union | 2005

Northern Adriatic Response to a Wintertime Bora Wind Event

Craig M. Lee; Farid Askari; Jeff Book; Sandro Carniel; Benoit Cushman-Roisin; Clive E. Dorman; James D. Doyle; Pierre Flament; Courtney K. Harris; Burton H. Jones; Milivoj Kuzmić; Paul J. Martin; Andrea S. Ogston; Mirko Orlić; Henry Perkins; Pierre-Marie Poulain; Julie Pullen; Aniello Russo; Christopher R. Sherwood; Richard P. Signell; Dietmar Thaler

During winters, the northern Adriatic Sea experiences frequent, intense cold-air outbreaks that drive oceanic heat loss and imprint complex but predictable patterns in the underlying waters. This strong, reliable forcing makes this region an excellent laboratory for observational and numerical investigations of air-sea interaction, sediment and biological transport, and mesoscale wind-driven flow. Narrow sea surface wind jets, commonly known as “bora,” occur when cold, dry air spills through gaps in the Dinaric Alps (the mountain range situated along the Adriatics eastern shore). Horizontal variations in these winds drive a mosaic of oceanic cyclonic and anticyclonic cells that draw coastal waters far into the middle basin. The winds also drive intense cooling and overturning, producing a sharp front between dense, vertically homogenous waters (North Adriatic Dense Water, or NAdDW) in the north and the lighter (colder, fresher), stratified waters of the Po River plume. Once subducted at the front, the NAdDW flows southward in a narrow vein following the isobaths (contours of constant depth) of the Italian coast. In addition to governing the basins general circulation, these processes also influence sediment transport and modulate biological and optical variability


Journal of Sea Research | 2002

Validation of turbulence closure parameterisations for stably stratified flows using the PROVESS turbulence measurements in the North Sea

Patrick J Luyten; Sandro Carniel; Georg Umgiesser

A number of parameterisations for the simulation of mixing processes in the thermocline are compared and tested against the microstructure data of the PROVESS campaigns, conducted in the northern part of the North Sea during the autumn of 1998. The transport term in the turbulent kinetic energy equation is parameterised via the introduction of a third stability function S-k for turbulent energy diffusion. The formulations are compared with a simpler scheme based upon limiting conditions for turbulence variables. Improved results are obtained with a new form of Sk. The best agreement is, however, found with the simpler limiting scheme. This is explained in terms of a turbulence length scale theory for stably stratified turbulence. In agreement with previous laboratory and ocean data it is found that the ratios of the Thorpe and Kolmogorov scales to the Ozmidov length scale approach critical limiting values in the thermocline. The first of these conditions is satisfied when limiting conditions are implemented into the scheme, providing the necessary minimum value for the dissipation rate, whereas the schemes without limiting conditions fail to produce this critical ratio. The basic reason for this failure is that the Thorpe scale is overestimated, which is shown to be connected to an even larger overprediction of the dissipation rate of temperature variance. To investigate the impact of non-resolved advective processes and salinity stratification on the turbulence predictions, additional numerical experiments were conducted using a simple scheme for data assimilation. The best agreement is found again with the limiting scheme, which is able to make reasonable predictions for the dissipation rate without knowing the detailed shape of the mean stratification profile. It is shown that advective transport due to tidally and wind-driven motions has a non-negligible impact on vertical mixing. This is seen in the data and the models by periodic enhancements of turbulent mixing inside the thermocline


Journal of Physical Oceanography | 2015

Observation of Extreme Sea Waves in a Space–Time Ensemble

Alvise Benetazzo; Francesco Barbariol; Filippo Bergamasco; Andrea Torsello; Sandro Carniel; Mauro Sclavo

AbstractIn this paper, an observational space–time ensemble of sea surface elevations is investigated in search of the highest waves of the sea state. Wave data were gathered by means of a stereo camera system, which was installed on top of a fixed oceanographic platform located in the Adriatic Sea (Italy). Waves were measured during a mature sea state with an average wind speed of 11 m s−1. By examining the space–time ensemble, the 3D wave groups have been isolated while evolving in the 2D space and grabbed “when and where” they have been close to the apex of their development, thus exhibiting large surface displacements. The authors have selected the groups displaying maximal crest height exceeding the threshold adopted to define rogue waves in a time record, that is, 1.25 times the significant wave height (Hs). The records at the spatial positions where such large crests occurred have been analyzed to derive the empirical distributions of crest and wave heights, which have been compared against standar...


Science & Justice | 2002

Tracking the drift of a human body in the coastal ocean using numerical prediction models of the oceanic, atmospheric and wave conditions

Sandro Carniel; Georg Umgiesser; Mauro Sclavo; Lakshmi H. Kantha; S. Monti

This paper describes the use of numerical models to infer the path of a floating human body in the Ligurian Sea (north-west Mediterranean) during the month of January 2001. The prevailing oceanic currents were obtained from a state-of-the-art real-time nowcast/forecast ocean circulation model, while the sea state was inferred from a numerical model of the surface gravity waves, both driven by regional atmospheric models. The surface currents (from the ocean model) and the drift ones at the ocean surface, as inferred from the wave model, were used to drive a Lagrangian model of the drifting body to deduce its plausible trajectory along the Ligurian coast. The inferred path is reasonably consistent with location and time of the discovery on the French coast. This note illustrates the utility of numerical prediction models at the disposal of modern forensic science in the fields of ocean sciences.


Archive | 2016

Wave-current interaction effect on sediment dispersal in a shallow semi-enclosed basin

Mauro Sclavo; Alvise Benetazzo; Sandro Carniel; Andrea Bergamasco; Francesco Marcello Falcieri; Davide Bonaldo

ABSTRACT Sclavo, M., Benetazzo, A., Carniel, S., Bergamasco, A., Falcieri, F.M., and Bonaldo, D., 2013. Wave-current interaction effect on sediment dispersal in a shallow semi-enclosed basin The shallow northern Adriatic Sea (namely Gulf of Venice) serves as a model for exploring the interaction of surface gravity waves and oceanic currents and how they influence bottom sediment dispersal and bathymetry evolution. This wave-current interaction effect is investigated using the Coupled Ocean–Atmosphere–Wave–Sediment Transport (COAWST) modeling system. COAWST relies on the Regional Ocean Modeling System (ROMS), the Simulating WAves Nearshore (SWAN) model, and the CSTMS (Community Sediment Transport Modeling System) models and routines. The 2-way data transfer between wave and ocean circulation models is synchronous via MCT (Model Coupling Toolkit), with ROMS providing to SWAN the 2-D current field, free surface elevation, and bathymetry. COAWST modeling system is implemented on two computational grids at different horizontal resolution: a parent grid (with resolution of 2.0 km) covering the whole Adriatic Sea and a child grid resolving the Gulf of Venice at a resolution of 0.5 km. Simulated waves and currents are validated against in-situ observations at the CNR-ISMAR Acqua Alta oceanographic tower, located 15 km off the Venice lagoon. The analysis of wave-current interaction effect on sediment dispersal and sea bottom evolution are performed over the 2011 winter season (January-March) with particular focus on the waves generated by dominant and prevailing winds blowing on the Adriatic Sea: Bora and Sirocco. Results show that while the effects on bottom stress may vary depending on wave propagation and current direction, the effects on advective dynamics may become dominant particularly in presence of severe storms with parallel wave propagation and global circulation, which is the case of Bora storms in northern Adriatic Sea.


Oceanological and Hydrobiological Studies | 2011

Towards validating a last generation, integrated wave-current-sediment numerical model in coastal regions using video measurements

Sandro Carniel; Mauro Sclavo; Renata Archetti

This paper presents the first steps in the implementation of a morphological numerical model to be applied in the Bevano River region, a shallow water area in the Adriatic Sea, with the aim of helping the identification and assessment of erosional patterns and bottom morphological modifications induced by severe marine storms. The numerical modeling, performed using a fully 3D coupled wave-current-sediment version of the ROMS model, has been complemented with in situ data analysis and observations: a first qualitative validation of the results was given by the analysis of images acquired via an ARGUS video station.Hydrodynamic modeling highlighted how shear bottom stresses and bottom currents fields were heavily influenced by severe storm situations, and had large effects on the morphology of shallow regions. The correlation between the wave-current induced bottom stresses and the resulting topography was investigated. Nearshore hydrodynamics modeling results demonstrated the dominant role played by alongshore sediment transport, with the magnitude of both cross- and along-shore wave-induced currents strongly depending on wave height and direction.We found a good qualitative conformity between the results of the numerical models applied during a “Bora” storm and the corresponding video observations; both techniques indicated the migration of the existing sandbar within the range of about 40 m seaward.Results show how integrated numerical open source tools, often used in oceanography, are becoming suitable for both preliminary investigations and for planning the effective littoral management, and how their calibration can be supported by the use of new low cost techniques, such as video measurements.


Journal of Sea Research | 2002

Exploring the thermal cycle of the Northern North Sea area using a 3-D circulation model: the example of PROVESS NNS station

Georg Umgiesser; Patrick J Luyten; Sandro Carniel

Abstract Within the framework of activities of the EC funded Project ‘Processes of Vertical Exchange in Shelf Seas’ (PROVESS), the seasonal thermal behaviour during 1998 at a station in the North Sea has been investigated using COHERENS, a three-dimensional fully non-linear hydrodynamic model. Extensive hydrographic measurements were carried out at the Northern North Sea (NNS) station, located at (59°20′N, 1°E). The collected data are used to validate the model results, showing an acceptable agreement between modelled temperatures and those obtained from CTDs and moored thermistors. This is valid both for surface and bottom temperatures, while the mixed layer thickness appears to be underestimated. A series of 3-D runs, testing different turbulence schemes, an internal wave mixing (IWM) parameterisation and the sensitivity to an increase of the surface stress, have been performed with the aim of assessing the relative importance of the advective and mixing processes. The model comparisons mostly evidenced differences in the behaviour of the bottom layer temperature during the last part of the year, which may be due to advection processes. The adoption of an internal wave mixing parameterisation, though managing to reproduce a deeper thermocline, overestimates the mixing around the period of the thermocline breakdown. The run adopting a wind stress increased by 50% provides a better agreement between observed and modelled thermocline. This applies also for surface velocities when compared to Acoustic Doppler Current Profiler (ADCP) measurements, while the bottom ones appear slightly underestimated only in the U-component. The Northern North Sea site appears to be located close to a gyre induced by thermal fronts. Comparisons with nearby wind data measured by an oil rig and by the ships operating in the area seem to confirm that the wind forcing values adopted during the integration are underestimated.


Ocean Dynamics | 2012

Assessment of meteorological climate models as inputs for coastal studies

Debora Bellafiore; Edoardo Bucchignani; Silvio Gualdi; Sandro Carniel; Vladimir Djurdjevic; Georg Umgiesser

Modeling studies of future changes in coastal hydrodynamics, in terms of storm surges and wave climate, need appropriate wind and atmospheric forcings, a necessary requirement for the realistic reproduction of the statistics and the resolution of small scale features. This work compares meteorological results from different climate models in the Mediterranean area, with a focus on the Adriatic Sea, in order to assess their capability to reproduce coastal meteorological features and their possibility to be used as forcings for hydrodynamic simulations. Five meteorological datasets are considered. They are obtained from two regional climate models, implemented with different spatial resolutions and setups and are downscaled from two different global climate models. Wind and atmospheric pressure fields are compared with measurements at four stations along the Italian Adriatic coast. The analysis is carried out both on simulations of the control period 1960–1990 and on the A1B Intergovernmental Panel for Climate Change scenario projections (2070–2100), highlighting the ability of each model in reproducing the statistical coastal meteorological behavior and possible changes. The importance of simulated global- and regional-scale meteorological processes, in terms of correct spatial resolution of the phenomena, is also discussed. Within the Adriatic Sea, the meteorological climate is influenced by the local orography that controls the strengthening of north-eastern katabatic winds like Bora. Results show indeed that the increase in spatial resolution provides a more realistic wind forcing for the hydrodynamic simulations. Moreover, the chosen setup and the global climate models that drive the regional downscalings appear to play an important role in reproducing correct atmospheric pressure fields. The comparison between scenario and control simulations shows a small increase in the mean atmospheric pressure values, while a decrease in mean wind speed and in extreme wind events is observed, particularly for the datasets with higher spatial resolution. Finally, results suggest that an ensemble of downscaled climate models is likely to provide the most suitable climatic forcings (wind and atmospheric pressure fields) for coastal hydrodynamic modeling.


Archive | 2012

Climatology of the Northern-Central Adriatic Sea

Aniello Russo; Sandro Carniel; Mauro Sclavo; Maja Krzelj

It is well know that the ocean processes exert a great influence on global climate as well as affect the local climate of coastal areas (Russo et al., 2002). Within the Mediterranean region (see Fig. 1a), the presence of the Adriatic Sea influences the atmospheric properties of the surrounding regions over long and short time-scales, and has obviously a relevant influence on human activities and ecosystems (Boldrin et al., 2009).


Journal of the Atmospheric Sciences | 2009

A Note on Modeling Mixing in Stably Stratified Flows

Lakshmi H. Kantha; Sandro Carniel

Abstract In a recent paper, Canuto et al. made a crucial contribution to modeling mixing in stably stratified flows by discovering that a modification to one of the closure constants can push the critical gradient Richardson number RiCR, beyond which turbulence is extinguished, to infinity. In this note, following their approach, the Kantha model is modified to yield a value of infinity for RiCR. The results are in good agreement with both the Canuto et al. results and the data presented in their paper.

Collaboration


Dive into the Sandro Carniel's collaboration.

Top Co-Authors

Avatar

Mauro Sclavo

National Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Davide Bonaldo

National Research Council

View shared research outputs
Top Co-Authors

Avatar

Lakshmi H. Kantha

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar

Aniello Russo

Marche Polytechnic University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jeffrey W. Book

United States Naval Research Laboratory

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge