Scott Corzine
Infinera
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Scott Corzine.
IEEE Journal of Selected Topics in Quantum Electronics | 2010
Radhakrishnan Nagarajan; Masaki Kato; J. Pleumeekers; Peter Evans; Scott Corzine; Sheila Hurtt; Andrew Dentai; Sanjeev Murthy; Mark J. Missey; Ranjani Muthiah; Randal A. Salvatore; Charles H. Joyner; Richard P. Schneider; Mehrdad Ziari; Fred A. Kish; David F. Welch
InP is an ideal integration platform for optical generation, switching, and detection components operating in the range of 1.3-1.6 m wavelength, which is preferred for data transmission in the most prevalent silica-based optical fiber. We review the current state of the art in advanced InP photonic ICs.
IEEE Journal of Selected Topics in Quantum Electronics | 2011
F. Kish; D. Welch; R. Nagarajan; J. Pleumeekers; Vikrant Lal; Mehrdad Ziari; Alan C. Nilsson; Masaki Kato; Sanjeev Murthy; P. Evans; Scott Corzine; Matthew L. Mitchell; Parmijit Samra; Mark J. Missey; Scott Demars; R. Schneider; M. Reffle; T. Butrie; Jeffrey T. Rahn; M.F. Van Leeuwen; J. W. Stewart; Damien Lambert; Ranjani Muthiah; Huan-Shang Tsai; Jeffrey Bostak; Andrew Dentai; Kuang-Tsan Wu; Han Sun; Don Pavinski; Jiaming Zhang
In this paper, the current state of the art for large-scale InP photonic integrated circuits (PICs) is reviewed with a focus on the devices and technologies that are driving the commercial scaling of highly integrated devices. Specifically, the performance, reliability, and manufacturability of commercial 100-Gb/s dense wavelength-division-multiplexed transmitter and receiver PICs are reviewed as well as next- and future-generation devices (500 Gb/s and beyond). The large-scale PIC enables significant reductions in cost, packaging complexity, size, fiber coupling, and power consumption which have enabled benefits at the component and system level.
IEEE Photonics Technology Letters | 2010
Scott Corzine; Peter Evans; M. Fisher; John Gheorma; Masaki Kato; Vincent G. Dominic; Parmijit Samra; Alan C. Nilsson; Jeff Rahn; Ilya Lyubomirsky; Andrew Dentai; P. Studenkov; Mark J. Missey; Damien Lambert; Augi Spannagel; Ranjani Muthiah; Randal A. Salvatore; Sanjeev Murthy; E. Strzelecka; J. Pleumeekers; Arnold Chen; Richard P. Schneider; Radhakrishnan Nagarajan; Mehrdad Ziari; J. Stewart; Charles H. Joyner; Fred A. Kish; David F. Welch
We report here the first demonstration of a large-scale monolithically integrated InP-based 10-channel 45.6-Gb/s per channel transmitter photonic integrated circuit employing polarization-multiplexed differential quadrature phase-shift keying modulation format.
optical fiber communication conference | 2011
P. Evans; M. Fisher; Roman Malendevich; Adam James; P. Studenkov; Gilad Goldfarb; T. Vallaitis; Masaki Kato; P. Samra; Scott Corzine; E. Strzelecka; Randal A. Salvatore; F. Sedgwick; Matthias Kuntz; Vikrant Lal; Damien Lambert; Andrew Dentai; Don Pavinski; Jiaming Zhang; Babak Behnia; Jeffrey Bostak; Vincent G. Dominic; Alan C. Nilsson; Brian Taylor; Jeffrey T. Rahn; Steve Sanders; Han Sun; Kuang-Tsan Wu; J. Pleumeekers; Ranjani Muthiah
A 10-wavelength, polarization-multiplexed, monolithically integrated InP transmitter PIC is demonstrated for the first time to operate at 112 Gb/s per wavelength with a coherent receiver PIC.
Proceedings of the IEEE | 2013
Fred A. Kish; Radhakrishnan Nagarajan; David F. Welch; Peter Evans; Jon Rossi; J. Pleumeekers; Andrew Dentai; Masaki Kato; Scott Corzine; Ranjani Muthiah; Mehrdad Ziari; Richard P. Schneider; M. Reffle; Tim Butrie; Damien Lambert; Mark J. Missey; Vikrant Lal; M. Fisher; Sanjeev Murthy; Randal A. Salvatore; Scott Demars; Adam James; C. Joyner
The discovery of the visible light-emitting diode (LED) 50 years ago by Holonyak and Bevacqua and the associated demonstration of the viability of the III-V semiconductor alloy created a foundational basis for the field of optoelectronics. Key advances which enabled the progression from the first visible LED to todays III-V photonic integrated circuits (PICs) are described. Furthermore, the current state-of-the-art 500-Gb/s and 1-Tb/s large-scale InP transmitter and receiver PICs and their essential role in the optical communications networks are reviewed.
Optics Express | 2011
P. Evans; M. Fisher; Roman Malendevich; Adam James; Gilad Goldfarb; T. Vallaitis; Masaki Kato; P. Samra; Scott Corzine; E. Strzelecka; P. Studenkov; Randal A. Salvatore; F. Sedgwick; Matthias Kuntz; Lal; Damien Lambert; Andrew Dentai; Don Pavinski; Jiaming Zhang; Cornelius J; Tsai T; Babak Behnia; Jeffrey Bostak; Dominic; Alan C. Nilsson; Brian Taylor; Jeffrey T. Rahn; Steve Sanders; Han Sun; Kuang-Tsan Wu
In this work, a 10-wavelength, polarization-multiplexed, monolithically integrated InP coherent QPSK transmitter PIC is demonstrated to operate at 112 Gb/sec per wavelength and total chip superchannel bandwidth of 1.12 Tb/s. This demonstration suggests that increasing data capacity to multi-Tb/s per chip is possible and likely in the future.
IEEE Photonics Technology Letters | 1999
Matt Bruensteiner; George Papen; John W. Poulton; Stephen G. Tell; Robert Palmer; Kirk S. Giboney; David W. Dolfi; Scott Corzine
We present results of a 3.3-V CMOS digital preequalization drive chip for vertical-cavity surface-emitting laser-based gigabit multimode fiber links. The pre-equalization can partially compensate for the effects of the limited fiber bandwidth and differential mode delay. This type of equalization may form a low cost method to increase the bandwidth-distance product of current fiber links directly enabling higher optical signaling standards.
Journal of Lightwave Technology | 2017
Vikrant Lal; J. Summers; Naksup Kim; Scott Corzine; Peter Evans; Matthias Lauermann; An Nguyen; Amir Hosseini; Mingzhi Lu; Jeffrey T. Rahn; Mohammad Reza Chitgarha; Jiaming Zhang; John W. Osenbach; T. Vallaitis; Parmijit Samra; Charles Park; Matthias Kuntz; Jie Tang; Corey Tsai; Han Sun; R. Schmogrow; Don Pavinski; Babak Behnia; Pierre Mertz; Tim Butrie; Kuang-Tsan Wu; Matthew L. Mitchell; Mehrdad Ziari; M. Reffle; David F. Welch
We demonstrate a fully integrated multi-channel InP-based coherent transmitter photonic integrated circuits (PICs) with extended C-band tunability, operating at 33 and 44 Gbaud per channel under 16-QAM dual-polarization modulation. PICs are demonstrated integrating up to 14-channels enabling multi-Tb/s total PIC capacities.
lasers and electro-optics society meeting | 2008
Scott Corzine; P. Evans; Masaki Kato; M. Fisher; Maura Raburn; Andrew Dentai; Ilya Lyubomirsky; Alan C. Nilsson; Jeffrey T. Rahn; R. Nagarajan; Babak Behnia; Jeffrey Bostak; J. Stewart; D. Christini; Mark J. Missey; Vikrant Lal; H. Dinh; Arnold Chen; J. Thomson; W. Williams; P. Chavarkar; Steven Nguyen; Damien Lambert; S. Agashe; Augi Spannagel; Jon Rossi; P. Liu; Jonas Webjorn; T. Butrie; M. Reffle
We will review the latest performance metrics for components enabling communication networks based on phase modulation formats. For spectral efficiency, reduced complexity, reliability, and power consumption; monolithic integration on InP is clearly the superior path.
Optics Express | 2017
Amir Hosseini; M. Lu; R. Going; P. Samra; S. Amiralizadeh; A. Nguyen; Jeffrey T. Rahn; Vince Dominic; A. Awadalla; Scott Corzine; N. Kim; J. Summers; D. Gold; J. Tang; H-S. Tsai; K. Weidner; P. Abolghasem; Matthias Lauermann; Jiaming Zhang; J. Yan; T. Vallaitis; G. Gilardi; Andrew Dentai; N. Modi; P. Evans; Vikrant Lal; Matthias Kuntz; Don Pavinski; Mehrdad Ziari; J. Osenbach
Fully integrated monolithic, multi-channel InP-based coherent receiver PICs and transceiver modules with extended C-band tunability are described. These PICs operate at 33 and 44 Gbaud per channel under dual polarization (DP) 16-QAM modulation. Fourteen-channel monolithic InP receiver PICs show integration and data rate scaling capability to operate at 44 Gbaud under DP 16-QAM modulation for combined 4.9 Tb/s total capacity. Six channel simultaneous operation of a commercial transceiver module at 33 Gbaud is demonstrated for a variety of modulation formats including DP 16-QAM for >1.2Tbit/s aggregate data capacity.