Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Scott D. Hamilton-Brehm is active.

Publication


Featured researches published by Scott D. Hamilton-Brehm.


Applied and Environmental Microbiology | 2009

Efficient Degradation of Lignocellulosic Plant Biomass, without Pretreatment, by the Thermophilic Anaerobe “Anaerocellum thermophilum” DSM 6725

Sung-Jae Yang; Irina Kataeva; Scott D. Hamilton-Brehm; Nancy L. Engle; Timothy J. Tschaplinski; Crissa Doeppke; Mark F. Davis; Janet Westpheling; Michael W. W. Adams

ABSTRACT Very few cultivated microorganisms can degrade lignocellulosic biomass without chemical pretreatment. We show here that “Anaerocellum thermophilum” DSM 6725, an anaerobic bacterium that grows optimally at 75°C, efficiently utilizes various types of untreated plant biomass, as well as crystalline cellulose and xylan. These include hardwoods such as poplar, low-lignin grasses such as napier and Bermuda grasses, and high-lignin grasses such as switchgrass. The organism did not utilize only the soluble fraction of the untreated biomass, since insoluble plant biomass (as well as cellulose and xylan) obtained after washing at 75°C for 18 h also served as a growth substrate. The predominant end products from all growth substrates were hydrogen, acetate, and lactate. Glucose and cellobiose (on crystalline cellulose) and xylose and xylobiose (on xylan) also accumulated in the growth media during growth on the defined substrates but not during growth on the plant biomass. A. thermophilum DSM 6725 grew well on first- and second-spent biomass derived from poplar and switchgrass, where spent biomass is defined as the insoluble growth substrate recovered after the organism has reached late stationary phase. No evidence was found for the direct attachment of A. thermophilum DSM 6725 to the plant biomass. This organism differs from the closely related strain A. thermophilum Z-1320 in its ability to grow on xylose and pectin. Caldicellulosiruptor saccharolyticus DSM 8903 (optimum growth temperature, 70°C), a close relative of A. thermophilum DSM 6725, grew well on switchgrass but not on poplar, indicating a significant difference in the biomass-degrading abilities of these two otherwise very similar organisms.


Applied and Environmental Microbiology | 2010

Caldicellulosiruptor obsidiansis sp. nov., an Anaerobic, Extremely Thermophilic, Cellulolytic Bacterium Isolated from Obsidian Pool, Yellowstone National Park

Scott D. Hamilton-Brehm; Jennifer J. Mosher; Tatiana A. Vishnivetskaya; Mircea Podar; Sue L. Carroll; S. L. Allman; Tommy J. Phelps; Martin Keller; James G. Elkins

ABSTRACT A novel, obligately anaerobic, extremely thermophilic, cellulolytic bacterium, designated OB47T, was isolated from Obsidian Pool, Yellowstone National Park, WY. The isolate was a nonmotile, non-spore-forming, Gram-positive rod approximately 2 μm long by 0.2 μm wide and grew at temperatures between 55 and 85°C, with the optimum at 78°C. The pH range for growth was 6.0 to 8.0, with values of near 7.0 being optimal. Growth on cellobiose produced the fastest specific growth rate at 0.75 h−1. The organism also displayed fermentative growth on glucose, maltose, arabinose, fructose, starch, lactose, mannose, sucrose, galactose, xylose, arabinogalactan, Avicel, xylan, filter paper, processed cardboard, pectin, dilute acid-pretreated switchgrass, and Populus. OB47T was unable to grow on mannitol, fucose, lignin, Gelrite, acetate, glycerol, ribose, sorbitol, carboxymethylcellulose, and casein. Yeast extract stimulated growth, and thiosulfate, sulfate, nitrate, and sulfur were not reduced. Fermentation end products were mainly acetate, H2, and CO2, although lactate and ethanol were produced in 5-liter batch fermentations. The G+C content of the DNA was 35 mol%, and sequence analysis of the small subunit rRNA gene placed OB47T within the genus Caldicellulosiruptor. Based on its phylogenetic and phenotypic properties, the isolate is proposed to be designated Caldicellulosiruptor obsidiansis sp. nov. and OB47 is the type strain (ATCC BAA-2073).


Journal of Bacteriology | 2012

Caldicellulosiruptor Core and Pangenomes Reveal Determinants for Noncellulosomal Thermophilic Deconstruction of Plant Biomass

Sara E. Blumer-Schuette; Richard J. Giannone; Jeffrey V. Zurawski; Inci Ozdemir; Qin Ma; Yanbin Yin; Ying Xu; Irena Kataeva; Farris L. Poole; Michael W. W. Adams; Scott D. Hamilton-Brehm; James G. Elkins; Frank W. Larimer; Miriam Land; Loren Hauser; Robert W. Cottingham; Robert L. Hettich; Robert M. Kelly

Extremely thermophilic bacteria of the genus Caldicellulosiruptor utilize carbohydrate components of plant cell walls, including cellulose and hemicellulose, facilitated by a diverse set of glycoside hydrolases (GHs). From a biofuel perspective, this capability is crucial for deconstruction of plant biomass into fermentable sugars. While all species from the genus grow on xylan and acid-pretreated switchgrass, growth on crystalline cellulose is variable. The basis for this variability was examined using microbiological, genomic, and proteomic analyses of eight globally diverse Caldicellulosiruptor species. The open Caldicellulosiruptor pangenome (4,009 open reading frames [ORFs]) encodes 106 GHs, representing 43 GH families, but only 26 GHs from 17 families are included in the core (noncellulosic) genome (1,543 ORFs). Differentiating the strongly cellulolytic Caldicellulosiruptor species from the others is a specific genomic locus that encodes multidomain cellulases from GH families 9 and 48, which are associated with cellulose-binding modules. This locus also encodes a novel adhesin associated with type IV pili, which was identified in the exoproteome bound to crystalline cellulose. Taking into account the core genomes, pangenomes, and individual genomes, the ancestral Caldicellulosiruptor was likely cellulolytic and evolved, in some cases, into species that lost the ability to degrade crystalline cellulose while maintaining the capacity to hydrolyze amorphous cellulose and hemicellulose.


Biotechnology for Biofuels | 2012

Evaluation of the bioconversion of genetically modified switchgrass using simultaneous saccharification and fermentation and a consolidated bioprocessing approach

Kelsey L. Yee; Miguel Rodriguez; Timothy J. Tschaplinski; Nancy L. Engle; Madhavi Z. Martin; Chunxiang Fu; Zeng-Yu Wang; Scott D. Hamilton-Brehm; Jonathan R. Mielenz

BackgroundThe inherent recalcitrance of lignocellulosic biomass is one of the major economic hurdles for the production of fuels and chemicals from biomass. Additionally, lignin is recognized as having a negative impact on enzymatic hydrolysis of biomass, and as a result much interest has been placed on modifying the lignin pathway to improve bioconversion of lignocellulosic feedstocks.ResultsDown-regulation of the caffeic acid 3-O-methyltransferase (COMT) gene in the lignin pathway yielded switchgrass (Panicum virgatum) that was more susceptible to bioconversion after dilute acid pretreatment. Here we examined the response of these plant lines to milder pretreatment conditions with yeast-based simultaneous saccharification and fermentation and a consolidated bioprocessing approach using Clostridium thermocellum, Caldicellulosiruptor bescii and Caldicellulosiruptor obsidiansis. Unlike the S. cerevisiae SSF conversions, fermentations of pretreated transgenic switchgrass with C. thermocellum showed an apparent inhibition of fermentation not observed in the wild-type switchgrass. This inhibition can be eliminated by hot water extraction of the pretreated biomass, which resulted in superior conversion yield with transgenic versus wild-type switchgrass for C. thermocellum, exceeding the yeast-based SSF yield. Further fermentation evaluation of the transgenic switchgrass indicated differential inhibition for the Caldicellulosiruptor sp. strains, which could not be rectified by additional processing conditions. Gas chromatography–mass spectrometry (GC-MS) metabolite profiling was used to examine the fermentation broth to elucidate the relative abundance of lignin derived aromatic compounds. The types and abundance of fermentation-derived-lignin constituents varied between C. thermocellum and each of the Caldicellulosiruptor sp. strains.ConclusionsThe down-regulation of the COMT gene improves the bioconversion of switchgrass relative to the wild-type regardless of the pretreatment condition or fermentation microorganism. However, bacterial fermentations demonstrated strain-dependent sensitivity to the COMT transgenic biomass, likely due to additional soluble lignin pathway-derived constituents resulting from the COMT gene disruption. Removal of these inhibitory constituents permitted completion of fermentation by C. thermocellum, but not by the Caldicellulosiruptor sp. strains. The reason for this difference in performance is currently unknown.


Journal of Bacteriology | 2010

Complete Genome Sequence of the Cellulolytic Thermophile Caldicellulosiruptor obsidiansis OB47T

James G. Elkins; Adriane Lochner; Scott D. Hamilton-Brehm; Karen W. Davenport; Mircea Podar; Steven D. Brown; Miriam Land; Loren Hauser; Dawn M. Klingeman; Babu Raman; Lynne Goodwin; Roxanne Tapia; Linda Meincke; John C. Detter; David Bruce; Cliff Han; Anthony V. Palumbo; Robert W. Cottingham; Martin Keller; David E. Graham

Caldicellulosiruptor obsidiansis OB47(T) (ATCC BAA-2073, JCM 16842) is an extremely thermophilic, anaerobic bacterium capable of hydrolyzing plant-derived polymers through the expression of multidomain/multifunctional hydrolases. The complete genome sequence reveals a diverse set of carbohydrate-active enzymes and provides further insight into lignocellulosic biomass hydrolysis at high temperatures.


Acta Crystallographica Section D-biological Crystallography | 2014

X-ray crystallographic studies of family 11 xylanase Michaelis and product complexes: implications for the catalytic mechanism

Qun Wan; Qiu Zhang; Scott D. Hamilton-Brehm; Kevin L. Weiss; Marat Mustyakimov; Leighton Coates; Paul Langan; David E. Graham; Andrey Kovalevsky

Xylanases catalyze the hydrolysis of plant hemicellulose xylan into oligosaccharides by cleaving the main-chain glycosidic linkages connecting xylose subunits. To study ligand binding and to understand how the pH constrains the activity of the enzyme, variants of the Trichoderma reesei xylanase were designed to either abolish its activity (E177Q) or to change its pH optimum (N44H). An E177Q-xylohexaose complex structure was obtained at 1.15 Å resolution which represents a pseudo-Michaelis complex and confirmed the conformational movement of the thumb region owing to ligand binding. Co-crystallization of N44H with xylohexaose resulted in a hydrolyzed xylotriose bound in the active site. Co-crystallization of the wild-type enzyme with xylopentaose trapped an aglycone xylotriose and a transglycosylated glycone product. Replacing amino acids near Glu177 decreased the xylanase activity but increased the relative activity at alkaline pH. The substrate distortion in the E177Q-xylohexaose structure expands the possible conformational itinerary of this xylose ring during the enzyme-catalyzed xylan-hydrolysis reaction.


Journal of Bacteriology | 2005

Metabolic and Evolutionary Relationships among Pyrococcus Species: Genetic Exchange within a Hydrothermal Vent Environment

Scott D. Hamilton-Brehm; Gerrit J. Schut; Michael W. W. Adams

Pyrococcus furiosus and Pyrococcus woesei grow optimally at temperatures near 100 degrees C and were isolated from the same shallow marine volcanic vent system. Hybridization of genomic DNA from P. woesei to a DNA microarray containing all 2,065 open reading frames (ORFs) annotated in the P. furiosus genome, in combination with PCR analysis, indicated that homologs of 105 ORFs present in P. furiosus are absent from the uncharacterized genome of P. woesei. Pulsed-field electrophoresis indicated that the sizes of the two genomes are comparable, and the results were consistent with the hypothesis that P. woesei lacks the 105 ORFs found in P. furiosus. The missing ORFs are present in P. furiosus mainly in clusters. These clusters include one cluster (Mal I, PF1737 to PF1751) involved in maltose metabolism and another cluster (PF0691 to PF0695) whose products are thought to remove toxic reactive nitrogen species. Accordingly, it was found that P. woesei, in contrast to P. furiosus, is unable to utilize maltose as a carbon source for growth, and the growth of P. woesei on starch was inhibited by addition of a nitric oxide generator. In P. furiosus the ORF clusters not present in P. woesei are bracketed by or are in the vicinity of insertion sequences or long clusters of tandem repeats (LCTRs). While the role of LCTRs in lateral gene transfer is not known, the Mal I cluster in P. furiosus is a composite transposon that undergoes replicative transposition. The same locus in P. woesei lacks any evidence of insertion activity, indicating that P. woesei is a sister or even the parent of P. furiosus. P. woesei may have acquired by lateral gene transfer more than 100 ORFs from other organisms living in the same thermophilic environment to produce the type strain of P. furiosus.


Bioresource Technology | 2011

Mathematical modeling of hydrolysate diffusion and utilization in cellulolytic biofilms of the extreme thermophile Caldicellulosiruptor obsidiansis.

Zhi-Wu Wang; Scott D. Hamilton-Brehm; Adriane Lochner; James G. Elkins; Jennifer L. Morrell-Falvey

In this study, a hydrolysate diffusion and utilization model was developed to examine factors influencing cellulolytic biofilm morphology. Model simulations using Caldicellulosiruptor obsidiansis revealed that the cellulolytic biofilm needs to generate more hydrolysate than it consumes to establish a higher than bulk solution intra-biofilm substrate concentration to support its growth. This produces a hydrolysate surplus that diffuses through the thin biofilm structure into the bulk solution, which gives rise to a uniform growth rate and hence the homogeneous morphology of the cellulolytic biofilm. Model predictions were tested against experimental data from a cellulose-fermenting bioreactor and the results were consistent with the model prediction and indicated that only a small fraction (10-12%) of the soluble hydrolysis products are utilized by the biofilm. The factors determining the rate-limiting step of cellulolytic biofilm growth are also analyzed and discussed.


Applied and Environmental Microbiology | 2009

Antimicrobial Activity of the Iron-Sulfur Nitroso Compound Roussin's Black Salt [Fe4S3(NO)7] on the Hyperthermophilic Archaeon Pyrococcus furiosus

Scott D. Hamilton-Brehm; Gerrit J. Schut; Michael W. W. Adams

ABSTRACT The iron-sulfur nitroso compound [Fe4S3(NO)7]− is a broad-spectrum antimicrobial agent that has been used for more than 100 years to combat pathogenic anaerobes. Known as Roussins black salt (RBS), it contains seven moles of nitric oxide, the release of which was always assumed to mediate its cytotoxicity. Using the hyperthermophilic archaeon Pyrococcus furiosus, it is demonstrated through growth studies, membrane analyses, and scanning electron microscopy that nitric oxide does not play a role in RBS toxicity; rather, the mechanism involves membrane disruption leading to cell lysis. Moreover, insoluble elemental sulfur (S0), which is reduced by P. furiosus to hydrogen sulfide, prevents cell lysis by RBS. It is proposed that S0 also directly interacts with the membranes of P. furiosus during its transfer into the cell, ultimately for reduction by a cytosolic NADPH sulfur reductase. RBS is proposed to be a new class of inorganic antimicrobial agent that also has potential use as an inert cell-lysing agent.


Methods of Molecular Biology | 2012

Anaerobic High-Throughput Cultivation Method for Isolation of Thermophiles Using Biomass-Derived Substrates

Scott D. Hamilton-Brehm; Tatiana A. Vishnivetskaya; S. L. Allman; Jonathan R. Mielenz; James G. Elkins

Flow cytometry (FCM) techniques have been developed for sorting mesophilic organisms, but the difficulty increases if the target microbes are thermophilic anaerobes. We demonstrate a reliable, high-throughput method of screening thermophilic anaerobic organisms using FCM and 96-well plates for growth on biomass-relevant substrates. The method was tested using the cellulolytic thermophiles Clostridium thermocellum (T(opt) = 55 °C), Caldicellulosiruptor obsidiansis (T(opt) = 78 °C) and the fermentative hyperthermophiles, Pyrococcus furiosus (T(opt) = 100 °C) and Thermotoga maritima (T(opt) = 80 °C). Multi-well plates were incubated at various temperatures for approximately 72-120 h and then tested for growth. Positive growth resulting from single cells sorted into individual wells containing an anaerobic medium was verified by OD(600). Depending on the growth substrate, up to 80 % of the wells contained viable cultures, which could be transferred to fresh media. This method was used to isolate thermophilic microbes from Rabbit Creek, Yellowstone National Park (YNP), Wyoming. Substrates for enrichment cultures including crystalline cellulose (Avicel), xylan (from Birchwood), pretreated switchgrass and Populus were used to cultivate organisms that may be of interest to lignocellulosic biofuel production.

Collaboration


Dive into the Scott D. Hamilton-Brehm's collaboration.

Top Co-Authors

Avatar

James G. Elkins

Oak Ridge National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David E. Graham

Oak Ridge National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Duane P. Moser

Desert Research Institute

View shared research outputs
Top Co-Authors

Avatar

Loren Hauser

Oak Ridge National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Mircea Podar

Oak Ridge National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Miriam Land

University of California

View shared research outputs
Top Co-Authors

Avatar

Robert W. Cottingham

Oak Ridge National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Adriane Lochner

Oak Ridge National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Anthony V. Palumbo

Oak Ridge National Laboratory

View shared research outputs
Researchain Logo
Decentralizing Knowledge