Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Scott Parker is active.

Publication


Featured researches published by Scott Parker.


The Journal of Infectious Diseases | 2013

Safety and Comparative Immunogenicity of an HIV-1 DNA Vaccine in Combination with Plasmid Interleukin 12 and Impact of Intramuscular Electroporation for Delivery

Spyros A. Kalams; Scott Parker; Marnie Elizaga; Barbara Metch; Srilatha Edupuganti; John Hural; Stephen C. De Rosa; Donald K. Carter; Kyle Rybczyk; Ian Frank; Jonathan D. Fuchs; Beryl A. Koblin; Denny H. Kim; Patrice Joseph; Michael C. Keefer; Lindsey R. Baden; John H. Eldridge; Jean D. Boyer; Adam Sherwat; Massimo Cardinali; Mary Allen; Michael Pensiero; Christopher Collett Butler; Amir S. Khan; Jian Yan; Niranjan Y. Sardesai; James G. Kublin; David B. Weiner

BACKGROUND DNA vaccines have been very poorly immunogenic in humans but have been an effective priming modality in prime-boost regimens. Methods to increase the immunogenicity of DNA vaccines are needed. METHODS HIV Vaccine Trials Network (HVTN) studies 070 and 080 were multicenter, randomized, clinical trials. The human immunodeficiency virus type 1 (HIV-1) PENNVAX®-B DNA vaccine (PV) is a mixture of 3 expression plasmids encoding HIV-1 Clade B Env, Gag, and Pol. The interleukin 12 (IL-12) DNA plasmid expresses human IL-12 proteins p35 and p40. Study subjects were healthy HIV-1-uninfected adults 18-50 years old. Four intramuscular vaccinations were given in HVTN 070, and 3 intramuscular vaccinations were followed by electroporation in HVTN 080. Cellular immune responses were measured by intracellular cytokine staining after stimulation with HIV-1 peptide pools. RESULTS Vaccination was safe and well tolerated. Administration of PV plus IL-12 with electroporation had a significant dose-sparing effect and provided immunogenicity superior to that observed in the trial without electroporation, despite fewer vaccinations. A total of 71.4% of individuals vaccinated with PV plus IL-12 plasmid with electroporation developed either a CD4(+) or CD8(+) T-cell response after the second vaccination, and 88.9% developed a CD4(+) or CD8(+) T-cell response after the third vaccination. CONCLUSIONS Use of electroporation after PV administration provided superior immunogenicity than delivery without electroporation. This study illustrates the power of combined DNA approaches to generate impressive immune responses in humans.


Journal of Virology | 2007

Induction of Natural Killer Cell Responses by Ectromelia Virus Controls Infection

April Keim Parker; Scott Parker; Wayne M. Yokoyama; John A. Corbett; R. Mark L. Buller

ABSTRACT Natural killer (NK) cells play a pivotal role in the innate immune response to viral infections, particularly murine cytomegalovirus (MCMV) and human herpesviruses. In poxvirus infections, the role of NK cells is less clear. We examined disease progression in C57BL/6 mice after the removal of NK cells by both antibody depletion and genetic means. We found that NK cells were crucial for survival and the early control of virus replication in spleen and to a lesser extent in liver in C57BL/6 mice. Studies of various knockout mice suggested that γδ T cells and NKT cells are not important in the C57BL/6 mousepox model and CD4+ and CD8+ T cells do not exhibit antiviral activity at 6 days postinfection, when the absence of NK cells has a profound effect on virus titers in spleen and liver. NK cell cytotoxicity and/or gamma interferon (IFN-γ) secretion likely mediated the antiviral effect needed to control virus infectivity in target organs. Studies of the effects of ectromelia virus (ECTV) infection on NK cells demonstrated that NK cells proliferate within target tissues (spleen and liver) and become activated following a low-dose footpad infection, although the mechanism of activation appears distinct from the ligand-dependent activation observed with MCMV. NK cell IFN-γ secretion was detected by intracellular cytokine staining transiently at 32 to 72 h postinfection in the lymph node, suggesting a role in establishing a Th1 response. These results confirm a crucial role for NK cells in controlling an ECTV infection.


JAMA | 2008

Effects of a Reduced Dose Schedule and Intramuscular Administration of Anthrax Vaccine Adsorbed on Immunogenicity and Safety at 7 Months: A Randomized Trial

Nina Marano; Brian D. Plikaytis; Stacey W. Martin; Charles E. Rose; Vera A. Semenova; Sandra K. Martin; Alison E. Freeman; Han Li; Mark J. Mulligan; Scott Parker; Janiine Babcock; Wendy A. Keitel; Hana M. El Sahly; Gregory A. Poland; Robert M. Jacobson; Harry L. Keyserling; Stephen D. Soroka; Sarah P. Fox; John Stamper; Michael M. McNeil; Bradley A. Perkins; Nancy E. Messonnier; Conrad P. Quinn

CONTEXT In 1999, the US Congress directed the Centers for Disease Control and Prevention to conduct a pivotal safety and efficacy study of anthrax vaccine adsorbed (AVA). OBJECTIVE To determine the effects on serological responses and injection site adverse events (AEs) resulting from changing the route of administration of AVA from subcutaneous (s.q.) to intramuscular (i.m.) and omitting the week 2 dose from the licensed schedule. DESIGN, SETTING, AND PARTICIPANTS Assessment of the first 1005 enrollees in a multisite, randomized, double-blind, noninferiority, phase 4 human clinical trial (ongoing from May 2002). INTERVENTION Healthy adults received AVA by the s.q. (reference group) or i.m. route at 0, 2, and 4 weeks and 6 months (4-SQ or 4-IM; n = 165-170 per group) or at a reduced 3-dose schedule (3-IM; n = 501). A control group (n = 169) received saline injections at the same time intervals. MAIN OUTCOME MEASURES Noninferiority at week 8 and month 7 of anti-protective antigen IgG geometric mean concentration (GMC), geometric mean titer (GMT), and proportion of responders with a 4-fold rise in titer (%4 x R). Reactogenicity outcomes were proportions of injection site and systemic AEs. RESULTS At week 8, the 4-IM group (GMC, 90.8 microg/mL; GMT, 1114.8; %4 x R, 97.7) was noninferior to the 4-SQ group (GMC, 105.1 microg/mL; GMT, 1315.4; %4 x R, 98.8) for all 3 primary end points. The 3-IM group was noninferior for only the %4 x R (GMC, 52.2 microg/mL; GMT, 650.6; %4 x R, 94.4). At month 7, all groups were noninferior to the licensed regimen for all end points. Solicited injection site AEs assessed during examinations occurred at lower proportions in the 4-IM group compared with 4-SQ. The odds ratio for ordinal end point pain reported immediately after injection was reduced by 50% for the 4-IM vs 4-SQ groups (P < .001). Route of administration did not significantly influence the occurrence of systemic AEs. CONCLUSIONS The 4-IM and 3-IM regimens of AVA provided noninferior immunological priming by month 7 when compared with the 4-SQ licensed regimen. Intramuscular administration significantly reduced the occurrence of injection site AEs. Trial Registration clinicaltrials.gov Identifier: NCT00119067.


PLOS ONE | 2012

Safety and Immunogenicity of an HIV-1 Gag DNA Vaccine with or without IL-12 and/or IL-15 Plasmid Cytokine Adjuvant in Healthy, HIV-1 Uninfected Adults

Spyros A. Kalams; Scott Parker; Xia Jin; Marnie Elizaga; Barbara Metch; Maggie Wang; John Hural; Michael Lubeck; John H. Eldridge; Massimo Cardinali; William A. Blattner; Magda Sobieszczyk; Vinai Suriyanon; Artur Kalichman; David B. Weiner; Lindsey R. Baden

Background DNA vaccines are a promising approach to vaccination since they circumvent the problem of vector-induced immunity. DNA plasmid cytokine adjuvants have been shown to augment immune responses in small animals and in macaques. Methodology/Principal Findings We performed two first in human HIV vaccine trials in the US, Brazil and Thailand of an RNA-optimized truncated HIV-1 gag gene (p37) DNA derived from strain HXB2 administered either alone or in combination with dose-escalation of IL-12 or IL-15 plasmid cytokine adjuvants. Vaccinations with both the HIV immunogen and cytokine adjuvant were generally well-tolerated and no significant vaccine-related adverse events were identified. A small number of subjects developed asymptomatic low titer antibodies to IL-12 or IL-15. Cellular immunogenicity following 3 and 4 vaccinations was poor, with response rates to gag of 4.9%/8.7% among vaccinees receiving gag DNA alone, 0%/11.5% among those receiving gag DNA+IL-15, and no responders among those receiving DNA+high dose (1500 ug) IL-12 DNA. However, after three doses, 44.4% (4/9) of vaccinees receiving gag DNA and intermediate dose (500 ug) of IL-12 DNA demonstrated a detectable cellular immune response. Conclusions/Significance This combination of HIV gag DNA with plasmid cytokine adjuvants was well tolerated. There were minimal responses to HIV gag DNA alone, and no apparent augmentation with either IL-12 or IL-15 plasmid cytokine adjuvants. Despite the promise of DNA vaccines, newer formulations or methods of delivery will be required to increase their immunogenicity. Trial Registration Clinicaltrials.gov NCT00115960 NCT00111605


Vaccine | 2009

Safety and Immunogenicity of a CTL Multiepitope Peptide Vaccine for HIV with or without GM-CSF in a Phase I Trial

Paul Spearman; Spyros A. Kalams; Marnie Elizaga; Barbara Metch; Ya Lin Chiu; Mary Allen; Kent J. Weinhold; Guido Ferrari; Scott Parker; M. Juliana McElrath; Sharon E. Frey; Jonathan D. Fuchs; Michael C. Keefer; Michael Lubeck; Michael A. Egan; Ralph P. Braun; John H. Eldridge; Barton F. Haynes; Lawrence Corey

There is an urgent need for a vaccine capable of preventing HIV infection or the development of HIV-related disease. A number of approaches designed to stimulate HIV-specific CD8+ cytotoxic T cell responses together with helper responses are presently under evaluation. In this phase 1, multi-center, placebo-controlled trial, we tested the ability of a novel multiepitope peptide vaccine to elicit HIV-specific immunity. To enhance the immunogenicity of the peptide vaccine, half of the vaccine recipients received recombinant granulocyte-macrophage colony stimulating factor (GM-CSF) protein as a coadjuvant. The vaccine was safe; tolerability was moderate, with a number of adverse events related to local injection site reactogenicity. Anti-GM-CSF antibody responses developed in the majority of GM-CSF recipients but were not associated with adverse hematologic events. The vaccine was only minimally immunogenic. Six of 80 volunteers who received vaccine developed HIV-specific responses as measured by interferon-gamma ELISPOT assay, and measurable responses were transient. This study failed to demonstrate that GM-CSF can substantially improve the overall weak immunogenicity of a multiepitope peptide-based HIV vaccine.


Journal of Virology | 2010

A Mouse Model of Lethal Infection for Evaluating Prophylactics and Therapeutics against Monkeypox Virus

Jennifer Stabenow; R. Mark L. Buller; Jill Schriewer; Cheri West; John E. Sagartz; Scott Parker

ABSTRACT Monkeypox virus (MPXV) is an orthopoxvirus closely related to variola, the etiological agent of smallpox. In humans, MPXV causes a disease similar to smallpox and is considered to be an emerging infectious disease. Moreover, the use of MPXV for bioterroristic/biowarfare activities is of significant concern. Available small animal models of human monkeypox have been restricted to mammals with poorly defined biologies that also have limited reagent availability. We have established a murine MPXV model utilizing the STAT1-deficient C57BL/6 mouse. Here we report that a relatively low-dose intranasal (IN) infection induces 100% mortality in the stat1−/− model by day 10 postinfection with high infectious titers in the livers, spleens, and lungs of moribund animals. Vaccination with modified vaccinia virus Ankara (MVA) followed by a booster vaccination is sufficient to protect against an intranasal MPXV challenge and induces an immune response more robust than that of a single vaccination. Furthermore, antiviral treatment with CMX001 (HDP-cidofovir) and ST-246 protects when administered as a regimen initiated on the day of infection. Thus, the stat1−/− model provides a lethal murine platform for evaluating therapeutics and for investigating the immunological and pathological responses to MPXV infection.


Journal of Virology | 2001

Analysis of Mason-Pfizer Monkey Virus Gag Particles by Scanning Transmission Electron Microscopy

Scott Parker; Joseph S. Wall; Eric Hunter

ABSTRACT Mason-Pfizer monkey virus immature capsids selected from the cytoplasm of baculovirus-infected cells were imaged by scanning transmission electron microscopy. The masses of individual selected Gag particles were measured, and the average mass corresponded to 1,900 to 2,100 Gag polyproteins per particle. A large variation in Gag particle mass was observed within each population measured.


Journal of Virology | 2000

A Cell-Line-Specific Defect in the Intracellular Transport and Release of Assembled Retroviral Capsids

Scott Parker; Eric Hunter

ABSTRACT Retrovirus assembly involves a complex series of events in which a large number of proteins must be targeted to a point on the plasma membrane where immature viruses bud from the cell. Gag polyproteins of most retroviruses assemble an immature capsid on the cytoplasmic side of the plasma membrane during the budding process (C-type assembly), but a few assemble immature capsids deep in the cytoplasm and are then transported to the plasma membrane (B- or D-type assembly), where they are enveloped. With both assembly phenotypes, Gag polyproteins must be transported to the site of viral budding in either a relatively unassembled form (C type) or a completely assembled form (B and D types). The molecular nature of this transport process and the host cell factors that are involved have remained obscure. During the development of a recombinant baculovirus/insect cell system for the expression of both C-type and D-type Gag polyproteins, we discovered an insect cell line (High Five) with two distinct defects that resulted in the reduced release of virus-like particles. The first of these was a pronounced defect in the transport of D-type but not C-type Gag polyproteins to the plasma membrane. High Five cells expressing wild-type Mason-Pfizer monkey virus (M-PMV) Gag precursors accumulate assembled immature capsids in large cytoplasmic aggregates similar to a transport-defective mutant (MA-A18V). In contrast, a larger fraction of the Gag molecules encoded by the M-PMV C-type morphogenesis mutant (MA-R55W) and those of human immunodeficiency virus were transported to the plasma membrane for assembly and budding of virions. When pulse-labeled Gag precursors from High Five cells were fractionated on velocity gradients, they sedimented more rapidly, indicating that they are sequestered in a higher-molecular-mass complex. Compared to Sf9 insect cells, the High Five cells also demonstrate a defect in the release of C-type virus particles. These findings support the hypothesis that host cell factors are important in the process of Gag transport and in the release of enveloped viral particles.


Virology | 2011

Poxvirus interleukin-4 expression overcomes inherent resistance and vaccine-induced immunity: Pathogenesis, prophylaxis and antiviral therapy

Nanhai Chen; Clifford J. Bellone; Jill Schriewer; Gelita Owens; Torgny N. Fredrickson; Scott Parker; R. Mark L. Buller

In 2001, Jackson et al. reported that murine IL-4 expression by a recombinant ectromelia virus caused enhanced morbidity and lethality in resistant C57BL/6 mice as well as overcame protective immune memory responses. To achieve a more thorough understanding of this phenomenon and to assess a variety of countermeasures, we constructed a series of ECTV recombinants encoding murine IL-4 under the control of promoters of different strengths and temporal regulation. We showed that the ECTV-IL-4 recombinant expressing the highest level of IL-4 was uniformly lethal for C57BL/6 mice even when previously immunized. The lethality of the ECTV-IL-4 recombinants resulted from virus-expressed IL-4 signaling through the IL-4 receptor but was not due to IL-4 toxicity. A number of treatment approaches were evaluated against the most virulent IL-4 encoding virus. The most efficacious therapy was a combination of two antiviral drugs (CMX001(®) and ST-246(®)) that have different mechanisms of action.


Proceedings of the National Academy of Sciences of the United States of America | 2001

Activation of the Mason–Pfizer monkey virus protease within immature capsids in vitro

Scott Parker; Eric Hunter

For all retroviruses, the completion of the viral budding process correlates with the activation of the viral protease by an unknown mechanism, and, as the structural (Gag) polyproteins are cleaved by the viral protease, maturation of the immature virus-like particle into an infectious virion. Unlike most retroviruses, the Mason–Pfizer monkey virus Gag polyproteins assemble into immature capsids within the cytoplasm of the cell before the viral budding event. The results reported here describe a unique experimental system in which Mason–Pfizer monkey virus immature capsids are removed from the cell, and the protease is activated in vitro by the addition of a reducing agent. The cleavage of the protease from the precursor form is a primary event, which proceeds with a half time of 14 min, and is followed by authentic processing of the Gag polyproteins. Activity of the viral protease in vitro depends on pH, with an increase in catalytic rates at acidic and neutral pH. The initiation of protease activity within immature capsids in vitro demonstrates that viral protease activity is sensitive to oxidation-reduction conditions, and that the viral protease can be activated in the absence of viral budding.

Collaboration


Dive into the Scott Parker's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge