Sean R. Landman
University of Minnesota
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Sean R. Landman.
Nature Communications | 2016
Christine Henzler; Yingming Li; Rendong Yang; Terri McBride; Yeung Ho; Cynthia C. Sprenger; Gang Liu; Ilsa Coleman; Bryce Lakely; Rui Li; Shihong Ma; Sean R. Landman; Vipin Kumar; Tae Hyun Hwang; Ganesh V. Raj; Celestia S. Higano; Colm Morrissey; Peter S. Nelson; Stephen R. Plymate; Scott M. Dehm
Molecularly targeted therapies for advanced prostate cancer include castration modalities that suppress ligand-dependent transcriptional activity of the androgen receptor (AR). However, persistent AR signalling undermines therapeutic efficacy and promotes progression to lethal castration-resistant prostate cancer (CRPC), even when patients are treated with potent second-generation AR-targeted therapies abiraterone and enzalutamide. Here we define diverse AR genomic structural rearrangements (AR-GSRs) as a class of molecular alterations occurring in one third of CRPC-stage tumours. AR-GSRs occur in the context of copy-neutral and amplified AR and display heterogeneity in breakpoint location, rearrangement class and sub-clonal enrichment in tumours within and between patients. Despite this heterogeneity, one common outcome in tumours with high sub-clonal enrichment of AR-GSRs is outlier expression of diverse AR variant species lacking the ligand-binding domain and possessing ligand-independent transcriptional activity. Collectively, these findings reveal AR-GSRs as important drivers of persistent AR signalling in CRPC.
Molecular Cancer Research | 2015
Casey R. Dorr; Callie L. Janik; Madison Weg; Raha A. Been; Justin Bader; Ryan Kang; Brandon Ng; Lindsey Foran; Sean R. Landman; M. Gerard O'Sullivan; Michael Steinbach; Aaron L. Sarver; Kevin A. T. Silverstein; David A. Largaespada; Timothy K. Starr
Non–small cell lung cancers (NSCLC) harbor thousands of passenger events that hide genetic drivers. Even highly recurrent events in NSCLC, such as mutations in PTEN, EGFR, KRAS, and ALK, are detected, at most, in only 30% of patients. Thus, many unidentified low-penetrant events are causing a significant portion of lung cancers. To detect low-penetrance drivers of NSCLC, a forward genetic screen was performed in mice using the Sleeping Beauty (SB) DNA transposon as a random mutagen to generate lung tumors in a Pten-deficient background. SB mutations coupled with Pten deficiency were sufficient to produce lung tumors in 29% of mice. Pten deficiency alone, without SB mutations, resulted in lung tumors in 11% of mice, whereas the rate in control mice was approximately 3%. In addition, thyroid cancer and other carcinomas, as well as the presence of bronchiolar and alveolar epithelialization, in mice deficient for Pten were also identified. Analysis of common transposon insertion sites identified 76 candidate cancer driver genes. These genes are frequently dysregulated in human lung cancers and implicate several signaling pathways. Cullin3 (Cul3), a member of a ubiquitin ligase complex that plays a role in the oxidative stress response pathway, was identified in the screen and evidence demonstrates that Cul3 functions as a tumor suppressor. Implications: This study identifies many novel candidate genetic drivers of lung cancer and demonstrates that CUL3 acts as a tumor suppressor by regulating oxidative stress. Mol Cancer Res; 13(8); 1238–47. ©2015 AACR.
Retrovirology | 2015
Jonathan M.O. Rawson; Sean R. Landman; Cavan Reilly; Louis M. Mansky
BackgroundHuman immunodeficiency virus type 2 (HIV-2) is often distinguished clinically by lower viral loads, reduced transmissibility, and longer asymptomatic periods than for human immunodeficiency virus type 1 (HIV-1). Differences in the mutation frequencies of HIV-1 and HIV-2 have been hypothesized to contribute to the attenuated progression of HIV-2 observed clinically.ResultsTo address this hypothesis, we performed Illumina sequencing of multiple amplicons prepared from cells infected with HIV-1 or HIV-2, resulting in ~4.7 million read pairs and the identification of ~200,000 mutations after data processing. We observed that: (1) HIV-2 displayed significantly lower total mutation, substitution, and transition mutation frequencies than that of HIV-1, along with a mutation spectrum markedly less biased toward G-to-A transitions, (2) G-to-A hypermutation consistent with the activity of APOBEC3 proteins was observed for both HIV-1 and HIV-2 despite the presence of Vif, (3) G-to-A hypermutation was significantly higher for HIV-1 than for HIV-2, and (4) HIV-1 and HIV-2 total mutation frequencies were not significantly different in the absence of G-to-A hypermutants.ConclusionsTaken together, these data demonstrate that HIV-2 exhibits a distinct mutational spectrum and a lower mutation frequency relative to HIV-1. However, the observed differences were primarily due to reduced levels of G-to-A hypermutation for HIV-2. These findings suggest that HIV-2 may be less susceptible than HIV-1 to APOBEC3-mediated hypermutation, but that the fidelities of other mutational sources (such as reverse transcriptase) are relatively similar for HIV-1 and HIV-2. Overall, these data imply that differences in replication fidelity are likely not a major contributing factor to the unique clinical features of HIV-2 infection.
PLOS ONE | 2014
Raha A. Been; Michael A. Linden; Courtney J. Hager; Krista J. DeCoursin; Juan E. Abrahante; Sean R. Landman; Michael Steinbach; Aaron L. Sarver; David A. Largaespada; Timothy K. Starr
Histiocytic sarcoma is a rare, aggressive neoplasm that responds poorly to therapy. Histiocytic sarcoma is thought to arise from macrophage precursor cells via genetic changes that are largely undefined. To improve our understanding of the etiology of histiocytic sarcoma we conducted a forward genetic screen in mice using the Sleeping Beauty transposon as a mutagen to identify genetic drivers of histiocytic sarcoma. Sleeping Beauty mutagenesis was targeted to myeloid lineage cells using the Lysozyme2 promoter. Mice with activated Sleeping Beauty mutagenesis had significantly shortened lifespan and the majority of these mice developed tumors resembling human histiocytic sarcoma. Analysis of transposon insertions identified 27 common insertion sites containing 28 candidate cancer genes. Several of these genes are known drivers of hematological neoplasms, like Raf1, Fli1, and Mitf, while others are well-known cancer genes, including Nf1, Myc, Jak2, and Pten. Importantly, several new potential drivers of histiocytic sarcoma were identified and could serve as targets for therapy for histiocytic sarcoma patients.
Antimicrobial Agents and Chemotherapy | 2015
Jonathan M.O. Rawson; Sean R. Landman; Cavan Reilly; Laurent Bonnac; Steven E. Patterson; Louis M. Mansky
ABSTRACT Decitabine has previously been shown to induce lethal mutagenesis of human immunodeficiency virus type 1 (HIV-1). However, the factors that determine the susceptibilities of individual sequence positions in HIV-1 to decitabine have not yet been defined. To investigate this, we performed Illumina high-throughput sequencing of multiple amplicons prepared from proviral DNA that was recovered from decitabine-treated cells infected with HIV-1. We found that decitabine induced an ≈4.1-fold increase in the total mutation frequency of HIV-1, primarily due to a striking ≈155-fold increase in the G-to-C transversion frequency. Intriguingly, decitabine also led to an ≈29-fold increase in the C-to-G transversion frequency. G-to-C frequencies varied substantially (up to ≈80-fold) depending upon sequence position, but surprisingly, mutational hot spots (defined as upper outliers within the mutation frequency distribution) were not observed. We further found that every single guanine position examined was significantly susceptible to the mutagenic effects of decitabine. Taken together, these observations demonstrate for the first time that decitabine-mediated HIV-1 mutagenesis is promiscuous and occurs in the absence of a clear bias for mutational hot spots. These data imply that decitabine-mediated G-to-C mutagenesis is a highly effective antiviral mechanism for extinguishing HIV-1 infectivity.
BMC Genomics | 2014
Sean R. Landman; Tae Hyun Hwang; Kevin A. T. Silverstein; Yingming Li; Scott M. Dehm; Michael Steinbach; Vipin Kumar
BackgroundPersonal genome assembly is a critical process when studying tumor genomes and other highly divergent sequences. The accuracy of downstream analyses, such as RNA-seq and ChIP-seq, can be greatly enhanced by using personal genomic sequences rather than standard references. Unfortunately, reads sequenced from these types of samples often have a heterogeneous mix of various subpopulations with different variants, making assembly extremely difficult using existing assembly tools. To address these challenges, we developed SHEAR (Sample Heterogeneity Estimation and Assembly by Reference;http://vk.cs.umn.edu/SHEAR), a tool that predicts SVs, accounts for heterogeneous variants by estimating their representative percentages, and generates personal genomic sequences to be used for downstream analysis.ResultsBy making use of structural variant detection algorithms, SHEAR offers improved performance in the form of a stronger ability to handle difficult structural variant types and better computational efficiency. We compare against the lead competing approach using a variety of simulated scenarios as well as real tumor cell line data with known heterogeneous variants. SHEAR is shown to successfully estimate heterogeneity percentages in both cases, and demonstrates an improved efficiency and better ability to handle tandem duplications.ConclusionSHEAR allows for accurate and efficient SV detection and personal genomic sequence generation. It is also able to account for heterogeneous sequencing samples, such as from tumor tissue, by estimating the subpopulation percentage for each heterogeneous variant.
Journal of Molecular Biology | 2017
Jonathan M.O. Rawson; Daryl M. Gohl; Sean R. Landman; Megan E. Roth; Morgan E. Meissner; Tara S. Peterson; James S. Hodges; Kenneth B. Beckman; Louis M. Mansky
A long-standing question of human immunodeficiency virus (HIV) genetic variation and evolution has been whether differences exist in mutation rate and/or mutation spectra among HIV types (i.e., HIV-1 versus HIV-2) and among HIV groups (i.e., HIV-1 groups M-P and HIV-2 groups A-H) and HIV-1 Group M subtypes (i.e., subtypes A-D, F-H, and J-K). To address this, we developed a new single-strand consensus sequencing assay for the determination of HIV mutation frequencies and spectra using the Illumina sequencing platform. This assay enables parallel and standardized comparison of HIV mutagenesis among various viral vectors with lower background error than traditional methods of Illumina library preparation. We found significant differences in viral mutagenesis between HIV types but intriguingly no significant differences among HIV-1 Group M subtypes. More specifically, HIV-1 exhibited higher transition frequencies than HIV-2, due mostly to single G-to-A mutations and (to a lesser extent) G-to-A hypermutation. These data suggest that HIV-2 RT exhibits higher fidelity during viral replication, and taken together, these findings demonstrate that HIV type but not subtype significantly affects viral mutation frequencies and spectra. These differences may inform antiviral and vaccine strategies.
Applied Clinical Informatics | 2017
Bonnie L. Westra; Sean R. Landman; Pranjul Yadav; Michael Steinbach
To conduct an independent secondary analysis of a multi-focal intervention for early detection of sepsis that included implementation of change management strategies, electronic surveillance for sepsis, and evidence based point of care alerting using the POC AdvisorTM application. METHODS Propensity score matching was used to select subsets of the cohorts with balanced covariates. Bootstrapping was performed to build distributions of the measured difference in rates/means. The effect of the sepsis intervention was evaluated for all patients, and High and Low Risk subgroups for illness severity. A separate analysis was performed patients on the intervention and non-intervention units (without the electronic surveillance). Sensitivity, specificity, and the positive predictive values were calculated to evaluate the accuracy of the alerting system for detecting sepsis or severe sepsis/ septic shock. RESULTS There was positive effect on the intervention units with sepsis electronic surveillance with an adjusted mortality rate of -6.6%. Mortality rates for non-intervention units also improved, but at a lower rate of -2.9%. Additional outcomes improved for patients on both intervention and non-intervention units for home discharge (7.5% vs 1.1%), total length of hospital stay (-0.9% vs -0.3%), and 30 day readmissions (-6.6% vs -1.6%). Patients on the intervention units showed better outcomes compared with non-intervention unit patients, and even more so for High Risk patients. The sensitivity was 95.2%, specificity of 82.0% and PPV of 50.6% for the electronic surveillance alerts. CONCLUSION There was improvement over time across the hospital for patients on the intervention and non-intervention units with more improvement for sicker patients. Patients on intervention units with electronic surveillance have better outcomes; however, due to differences in exclusion criteria and types of units, further study is needed to draw a direct relationship between the electronic surveillance system and outcomes.
Antimicrobial Agents and Chemotherapy | 2016
Jonathan M.O. Rawson; Michele B. Daly; Jiashu Xie; Christine L. Clouser; Sean R. Landman; Cavan Reilly; Laurent Bonnac; Baek Kim; Steven E. Patterson; Louis M. Mansky
ABSTRACT 5-Azacytidine (5-aza-C) is a ribonucleoside analog that induces the lethal mutagenesis of human immunodeficiency virus type 1 (HIV-1) by causing predominantly G-to-C transversions during reverse transcription. 5-Aza-C could potentially act primarily as a ribonucleotide (5-aza-CTP) or as a deoxyribonucleotide (5-aza-2′-deoxycytidine triphosphate [5-aza-dCTP]) during reverse transcription. In order to determine the primary form of 5-aza-C that is active against HIV-1, Illumina sequencing was performed using proviral DNA from cells treated with 5-aza-C or 5-aza-dC. 5-Aza-C and 5-aza-dC were found to induce highly similar patterns of mutation in HIV-1 in terms of the types of mutations observed, the magnitudes of effects, and the distributions of mutations at individual sequence positions. Further, 5-aza-dCTP was detected by liquid chromatography–tandem mass spectrometry in cells treated with 5-aza-C, demonstrating that 5-aza-C was a substrate for ribonucleotide reductase. Notably, levels of 5-aza-dCTP were similar in cells treated with equivalent effective concentrations of 5-aza-C or 5-aza-dC. Lastly, HIV-1 reverse transcriptase was found to incorporate 5-aza-CTP in vitro at least 10,000-fold less efficiently than 5-aza-dCTP. Taken together, these data support the model that 5-aza-C enhances the mutagenesis of HIV-1 primarily after reduction to 5-aza-dC, which can then be incorporated during reverse transcription and lead to G-to-C hypermutation. These findings may have important implications for the design of new ribonucleoside analogs directed against retroviruses.
Archive | 2017
Sean R. Landman; Tae Hyun Hwang
Tumor heterogeneity is a major challenge when it comes to treating cancer and also complicates research aimed at determining genetic sources for tumorigenesis. Leveraging high-throughput sequencing technology has been an effective approach for advancing our understanding of genetic diseases, and this type of data can also be used to better understand and make inferences about tumor heterogeneity. Here we describe the basics of genomics data analysis, as well as analysis pipelines for investigating tumor heterogeneity with next-generation sequencing data.