Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sebastian Pick is active.

Publication


Featured researches published by Sebastian Pick.


IEEE Transactions on Visualization and Computer Graphics | 2013

Extended Pie Menus for Immersive Virtual Environments

Sascha Gebhardt; Sebastian Pick; Franziska Leithold; Bernd Hentschel; Torsten W. Kuhlen

Pie menus are a well-known technique for interacting with 2D environments and so far a large body of research documents their usage and optimizations. Yet, comparatively little research has been done on the usability of pie menus in immersive virtual environments (IVEs). In this paper we reduce this gap by presenting an implementation and evaluation of an extended hierarchical pie menu system for IVEs that can be operated with a six-degrees-of-freedom input device. Following an iterative development process, we first developed and evaluated a basic hierarchical pie menu system. To better understand how pie menus should be operated in IVEs, we tested this system in a pilot user study with 24 participants and focus on item selection. Regarding the results of the study, the system was tweaked and elements like check boxes, sliders, and color map editors were added to provide extended functionality. An expert review with five experts was performed with the extended pie menus being integrated into an existing VR application to identify potential design issues. Overall results indicated high performance and efficient design.


eurographics | 2010

Automated positioning of annotations in immersive virtual environments

Sebastian Pick; Bernd Hentschel; Irene Tedjo-Palczynski; Marc Wolter; Torsten W. Kuhlen

The visualization of scientific data sets can be enhanced by providing additional information that aids the data analysis process. This information is represented by so called annotations, which contain descriptive meta data about the underlying visualization. The meta data results from diverse sources like previous analysis sessions (e.g. ideas, comments, or sketches) or automated meta data extraction (e.g. descriptive statistics). Visually integrating annotations into an existing data visualization while maintaining easy data access and a clear overview over all visible annotations is a non-trivial task. Several automated annotation positioning algorithms have been proposed that specifically target single-screen display systems and hence cannot be applied to immersive multiscreen display systems commonly used in Virtual Reality. In this paper, we propose a new automated annotation positioning algorithm specifically designed for such display systems. Our algorithm is based on an analogy to the well-known shadow volume technique, which is used to determine occlusion relations. A force-based approach is used to update annotation positions. The whole algorithm is independent of the specific annotation contents and considers well-established quality criteria to build an annotation layout. We evaluate our algorithm by means of performance measurements and a structured expert walkthrough.


symposium on 3d user interfaces | 2014

An evaluation of a smart-phone-based menu system for immersive virtual environments

Sascha Gebhardt; Sebastian Pick; Thomas Oster; Bernd Hentschel; Torsten W. Kuhlen

System control is a crucial task for many virtual reality applications and can be realized in a broad variety of ways, whereat the most common way is the use of graphical menus. These are often implemented as part of the virtual environment, but can also be displayed on mobile devices. Until now, many systems and studies have been published on using mobile devices such as personal digital assistants (PDAs) to realize such menu systems. However, most of these systems have been proposed way before smartphones existed and evolved to everyday companions for many people. Thus, it is worthwhile to evaluate the applicability of modern smartphones as carrier of menu systems for immersive virtual environments. To do so, we implemented a platform-independent menu system for smartphones and evaluated it in two different ways. First, we performed an expert review in order to identify potential design flaws and to test the applicability of the approach for demonstrations of VR applications from a demonstrators point of view. Second, we conducted a user study with 21 participants to test user acceptance of the menu system. The results of the two studies were contradictory: while experts appreciated the system very much, user acceptance was lower than expected. From these results we could draw conclusions on how smartphones should be used to realize system control in virtual environments and we could identify connecting factors for future research on the topic.


symposium on 3d user interfaces | 2016

SWIFTER: Design and evaluation of a speech-based text input metaphor for immersive virtual environments

Sebastian Pick; Andrew S. Puika; Torsten W. Kuhlen

Text input is an important part of the data annotation process, where text is used to capture ideas and comments. For text entry in immersive virtual environments, for which standard keyboards usually do not work, various approaches have been proposed. While these solutions have mostly proven effective, there still remain certain shortcomings making further investigations worthwhile. Motivated by recent research, we propose the speech-based multimodal text entry system SWIFTER, which strives for simplicity while maintaining good performance. In an initial user study, we compared our approach to smartphone-based text entry within a CAVE-like virtual environment. Results indicate that SWIFTER reaches an average input rate of 23.6 words per minute and is positively received by users in terms of user experience.


IEEE Transactions on Visualization and Computer Graphics | 2016

Design and Evaluation of Data Annotation Workflows for CAVE-like Virtual Environments

Sebastian Pick; Benjamin Weyers; Bernd Hentschel; Torsten W. Kuhlen

Data annotation finds increasing use in Virtual Reality applications with the goal to support the data analysis process, such as architectural reviews. In this context, a variety of different annotation systems for application to immersive virtual environments have been presented. While many interesting interaction designs for the data annotation workflow have emerged from them, important details and evaluations are often omitted. In particular, we observe that the process of handling metadata to interactively create and manage complex annotations is often not covered in detail. In this paper, we strive to improve this situation by focusing on the design of data annotation workflows and their evaluation. We propose a workflow design that facilitates the most important annotation operations, i.e., annotation creation, review, and modification. Our workflow design is easily extensible in terms of supported annotation and metadata types as well as interaction techniques, which makes it suitable for a variety of application scenarios. To evaluate it, we have conducted a user study in a CAVE-like virtual environment in which we compared our design to two alternatives in terms of a realistic annotation creation task. Our design obtained good results in terms of task performance and user experience.


2015 IEEE 8th Workshop on Software Engineering and Architectures for Realtime Interactive Systems (SEARIS) | 2015

A framework for developing flexible virtual-reality-centered annotation systems

Sebastian Pick; Torsten W. Kuhlen

The act of note-taking is an essential part of the data analysis process. It has been realized in form of various annotation systems that have been discussed in many publications. Unfortunately, the focus usually lies on high-level functionality, like interaction metaphors and display strategies. We argue that it is worthwhile to also consider software engineering aspects. Annotation systems often share similar functionality that can potentially be factored into reusable components with the goal to speed up the creation of new annotation systems. At the same time, however, VR-centered annotation systems are not only subject to application-specific requirements, but also to those arising from differences between the various VR platforms, like desktop VR setups or CAVEs. As a result, it is usually necessary to build application-specific VR-centered annotation systems from scratch instead of reusing existing components. To improve this situation, we present a framework that provides reusable and adaptable building blocks to facilitate the creation of flexible annotation systems for VR applications. We discuss aspects ranging from data representation over persistence to the integration of new data types and interaction metaphors, especially in context of multi-platform applications. To underpin the benefits of such an approach and promote the proposed concepts, we describe how the framework was applied to several of our own projects.


symposium on 3d user interfaces | 2015

Cirque des bouteilles: The art of blowing on bottles

Daniel Zielasko; Dominik Rausch; Yuen C. Law; Thomas Knott; Sebastian Pick; Sven Porsche; Joachim Herber; Johannes Hummel; Torsten W. Kuhlen

Making music by blowing on bottles is fun but challenging. We introduce a novel 3D user interface to play songs on virtual bottles. For this purpose the user blows into a microphone and the stream of air is recreated in the virtual environment and redirected to virtual bottles she is pointing to with her fingers. This is easy to learn and subsequently opens up opportunities for quickly switching between bottles and playing groups of them together to form complex melodies. Furthermore, our interface enables the customization of the virtual environment, by means of moving bottles, changing their type or filling level.


ieee virtual reality conference | 2015

flapAssist: How the integration of VR and visualization tools fosters the factory planning process

Sascha Gebhardt; Sebastian Pick; Hanno Voet; Julian Utsch; Toufik Al Khawli; Urs Eppelt; Rudolf Reinhard; Christian Büscher; Bernd Hentschel; Torsten W. Kuhlen

Virtual Reality (VR) systems are of growing importance to aid decision support in the context of the digital factory, especially factory layout planning. While current solutions either focus on virtual walkthroughs or the visualization of more abstract information, a solution that provides both, does currently not exist. To close this gap, we present a holistic VR application, called Factory Layout Planning Assistant (flapAssist). It is meant to serve as a platform for planning the layout of factories, while also providing a wide range of analysis features. By being scalable from desktops to CAVEs and providing a link to a central integration platform, flapAssist integrates well in established factory planning workflows.


ieee virtual reality conference | 2013

Virtual air traffic system simulation — Aiding the communication of air traffic effects

Sebastian Pick; Frank Wefers; Bernd Hentschel; Torsten W. Kuhlen

A key aspect of air traffic infrastructure projects is the communication between stakeholders during the approval process regarding their environmental impact. Yet, established means of communication have been found to be rather incomprehensible. In this paper we present an application that addresses these communication issues by enabling the exploration of airplane noise emissions in the vicinity of airports in a virtual environment (VE). The VE is composed of a model of the airport area and flight movement data. We combine a real-time 3D auralization approach with visualization techniques to allow for an intuitive access to noise emissions. Specifically designed interaction techniques help users to easily explore and compare air traffic scenarios.


2017 IEEE 3rd Workshop on Everyday Virtual Reality (WEVR) | 2017

Remain seated: towards fully-immersive desktop VR

Daniel Zielasko; Benjamin Weyers; Martin Bellgardt; Sebastian Pick; Alexander Meibner; Tom Vierjahn; Torsten W. Kuhlen

In this work we describe the scenario of fully-immersive desktop VR, which serves the overall goal to seamlessly integrate with existing workflows and workplaces of data analysts and researchers, such that they can benefit from the gain in productivity when immersed in their data-spaces. Furthermore, we provide a literature review showing the status quo of techniques and methods available for realizing this scenario under the raised restrictions. Finally, we propose a concept of an analysis framework and the decisions made and the decisions still to be taken, to outline how the described scenario and the collected methods are feasible in a real use case.

Collaboration


Dive into the Sebastian Pick's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hanno Voet

RWTH Aachen University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge