Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Shafiul Alam is active.

Publication


Featured researches published by Shafiul Alam.


PLOS Genetics | 2012

Genome-Wide Association Study Identifies Chromosome 10q24.32 Variants Associated with Arsenic Metabolism and Toxicity Phenotypes in Bangladesh

Brandon L. Pierce; Muhammad G. Kibriya; Lin Tong; Farzana Jasmine; Maria Argos; Shantanu Roy; Rachelle Paul-Brutus; Ronald Rahaman; Muhammad Rakibuz-Zaman; Faruque Parvez; Alauddin Ahmed; Iftekhar Quasem; Samar Kumar Hore; Shafiul Alam; Tariqul Islam; Vesna Slavkovich; Mary V. Gamble; Yunus; Mahfuzar Rahman; John A. Baron; Joseph H. Graziano; Habibul Ahsan

Arsenic contamination of drinking water is a major public health issue in many countries, increasing risk for a wide array of diseases, including cancer. There is inter-individual variation in arsenic metabolism efficiency and susceptibility to arsenic toxicity; however, the basis of this variation is not well understood. Here, we have performed the first genome-wide association study (GWAS) of arsenic-related metabolism and toxicity phenotypes to improve our understanding of the mechanisms by which arsenic affects health. Using data on urinary arsenic metabolite concentrations and approximately 300,000 genome-wide single nucleotide polymorphisms (SNPs) for 1,313 arsenic-exposed Bangladeshi individuals, we identified genome-wide significant association signals (P<5×10−8) for percentages of both monomethylarsonic acid (MMA) and dimethylarsinic acid (DMA) near the AS3MT gene (arsenite methyltransferase; 10q24.32), with five genetic variants showing independent associations. In a follow-up analysis of 1,085 individuals with arsenic-induced premalignant skin lesions (the classical sign of arsenic toxicity) and 1,794 controls, we show that one of these five variants (rs9527) is also associated with skin lesion risk (P = 0.0005). Using a subset of individuals with prospectively measured arsenic (n = 769), we show that rs9527 interacts with arsenic to influence incident skin lesion risk (P = 0.01). Expression quantitative trait locus (eQTL) analyses of genome-wide expression data from 950 individuals lymphocyte RNA suggest that several of our lead SNPs represent cis-eQTLs for AS3MT (P = 10−12) and neighboring gene C10orf32 (P = 10−44), which are involved in C10orf32-AS3MT read-through transcription. This is the largest and most comprehensive genomic investigation of arsenic metabolism and toxicity to date, the only GWAS of any arsenic-related trait, and the first study to implicate 10q24.32 variants in both arsenic metabolism and arsenical skin lesion risk. The observed patterns of associations suggest that MMA% and DMA% have distinct genetic determinants and support the hypothesis that DMA is the less toxic of these two methylated arsenic species. These results have potential translational implications for the prevention and treatment of arsenic-associated toxicities worldwide.


Environmental Health Perspectives | 2009

Folate, Cobalamin, Cysteine, Homocysteine, and Arsenic Metabolism among Children in Bangladesh

Megan N. Hall; Xinhua Liu; Vesna Slavkovich; Vesna Ilievski; J. Richard Pilsner; Shafiul Alam; Pam Factor-Litvak; Joseph H. Graziano; Mary V. Gamble

Background Approximately 35 million people in Bangladesh are chronically exposed to inorganic arsenic (InAs) in drinking water. Methylation of InAs to monomethylarsonic (MMA) and dimethylarsinic acids (DMA) relies on folate-dependent one-carbon metabolism and facilitates urinary arsenic (uAs) elimination. Objectives We examined the relationships between folate, cobalamin, cysteine, total homocysteine (tHcys), and uAs metabolites in a sample of 6-year-old Bangladeshi children (n = 165). Methods Children provided blood samples for measurement of tHcys, folate, cobalamin, and cysteine, and urine specimens for the measurement of total uAs and As metabolites. Results Consistent with our studies in adults, mean tHcys concentrations (7.9 μmol/L) were higher than those reported among children of similar ages in other populations. Nineteen percent of the children had plasma folate concentrations < 9.0 nmol/L. The proportion of total uAs excreted as InAs (%InAs) was inversely correlated with folate (r = −0.20, p = 0.01) and cysteine (r = −0.23, p = 0.003), whereas the correlations between %DMA and both folate (r = 0.12, p = 0.14) and cysteine (r = 0.11, p = 0.15) were positive. Homocysteine was inversely correlated (r = −0.27, p = 0.009) with %MMA in males, and the correlation with %DMA was positive (r = 0.13, p = 0.10). Conclusions These findings suggest that, similar to adults, folate and cysteine facilitate As methylation in children. However, the inverse correlation between tHcys and %MMA, and positive correlation with %DMA, are both opposite to our previous findings in adults. We propose that upregulation of one-carbon metabolism, presumably necessary to meet the considerable demands for DNA and protein biosynthesis during periods of rapid growth, results in both increased tHcys biosynthesis and increased As methylation.


International Journal of Epidemiology | 2013

Arsenic metabolism efficiency has a causal role in arsenic toxicity: Mendelian randomization and gene-environment interaction

Brandon L. Pierce; Lin Tong; Maria Argos; Jianjun Gao; Farzana Jasmine; Shantanu Roy; Rachelle Paul-Brutus; Ronald Rahaman; Muhammad Rakibuz-Zaman; Faruque Parvez; Alauddin Ahmed; Iftekhar Quasem; Samar Kumar Hore; Shafiul Alam; Tariqul Islam; Judith Harjes; Golam Sarwar; Vesna Slavkovich; Mary V. Gamble; Yu Chen; Mohammad Yunus; Mahfuzar Rahman; John Baron; Joseph H. Graziano; Habibul Ahsan

BACKGROUND Arsenic exposure through drinking water is a serious global health issue. Observational studies suggest that individuals who metabolize arsenic efficiently are at lower risk for toxicities such as arsenical skin lesions. Using two single nucleotide polymorphisms(SNPs) in the 10q24.32 region (near AS3MT) that show independent associations with metabolism efficiency, Mendelian randomization can be used to assess whether the association between metabolism efficiency and skin lesions is likely to be causal. METHODS Using data on 2060 arsenic-exposed Bangladeshi individuals, we estimated associations for two 10q24.32 SNPs with relative concentrations of three urinary arsenic species (representing metabolism efficiency): inorganic arsenic (iAs), monomethylarsonic acid(MMA) and dimethylarsinic acid (DMA). SNP-based predictions of iAs%, MMA% and DMA% were tested for association with skin lesion status among 2483 cases and 2857 controls. RESULTS Causal odds ratios for skin lesions were 0.90 (95% confidence interval[CI]: 0.87, 0.95), 1.19 (CI: 1.10, 1.28) and 1.23 (CI: 1.12, 1.36)for a one standard deviation increase in DMA%, MMA% and iAs%,respectively. We demonstrated genotype-arsenic interaction, with metabolism-related variants showing stronger associations with skin lesion risk among individuals with high arsenic exposure (synergy index: 1.37; CI: 1.11, 1.62). CONCLUSIONS We provide strong evidence for a causal relationship between arsenic metabolism efficiency and skin lesion risk. Mendelian randomization can be used to assess the causal role of arsenic exposure and metabolism in a wide array of health conditions.exposure and metabolism in a wide array of health conditions.Developing interventions that increase arsenic metabolism efficiency are likely to reduce the impact of arsenic exposure on health.


Environmental Health Perspectives | 2013

Chronic Arsenic Exposure and Blood Glutathione and Glutathione Disulfide Concentrations in Bangladeshi Adults

Megan N. Hall; Megan M. Niedzwiecki; Xinhua Liu; Kristin N. Harper; Shafiul Alam; Vesna Slavkovich; Vesna Ilievski; Diane Levy; Abu B. Siddique; Faruque Parvez; Jacob L. Mey; Alexander van Geen; Joseph H. Graziano; Mary V. Gamble

Background: In vitro and rodent studies have shown that arsenic (As) exposure can deplete glutathione (GSH) and induce oxidative stress. GSH is the primary intracellular antioxidant; it donates an electron to reactive oxygen species, thus producing glutathione disulfide (GSSG). Cysteine (Cys) and cystine (CySS) are the predominant thiol/disulfide redox couple found in human plasma. Arsenic, GSH, and Cys are linked in several ways: a) GSH is synthesized via the transsulfuration pathway, and Cys is the rate-limiting substrate; b) intermediates of the methionine cycle regulate both the transsulfuration pathway and As methylation; c) GSH serves as the electron donor for reduction of arsenate to arsenite; and d) As has a high affinity for sulfhydryl groups and therefore binds to GSH and Cys. Objectives: We tested the hypothesis that As exposure is associated with decreases in GSH and Cys and increases in GSSG and CySS (i.e., a more oxidized environment). Methods: For this cross-sectional study, the Folate and Oxidative Stress Study, we recruited a total of 378 participants from each of five water As concentration categories: < 10 (n = 76), 10–100 (n = 104), 101–200 (n = 86), 201–300 (n = 67), and > 300 µg/L (n = 45). Concentrations of GSH, GSSG, Cys, and CySS were measured using HPLC. Results: An interquartile range (IQR) increase in water As was negatively associated with blood GSH (mean change, –25.4 µmol/L; 95% CI: –45.3, –5.31) and plasma CySS (mean change, –3.00 µmol/L; 95% CI: –4.61, –1.40). We observed similar associations with urine and blood As. There were no significant associations between As exposure and blood GSSG or plasma Cys. Conclusions: The observed associations are consistent with the hypothesis that As may influence concentrations of GSH and other nonprotein sulfhydryls through binding and irreversible loss in bile and/or possibly in urine. Citation: Hall MN, Niedzwiecki M, Liu X, Harper KN, Alam S, Slavkovich V, Ilievski V, Levy D, Siddique AB, Parvez F, Mey JL, van Geen A, Graziano J, Gamble MV. 2013. Chronic arsenic exposure and blood glutathione and glutathione disulfide concentrations in Bangladeshi adults. Environ Health Perspect 121:1068–1074; http://dx.doi.org/10.1289/ehp.1205727


Journal of Nutrition | 2014

Folate and Cobalamin Modify Associations between S-adenosylmethionine and Methylated Arsenic Metabolites in Arsenic-Exposed Bangladeshi Adults

Caitlin G. Howe; Megan M. Niedzwiecki; Megan N. Hall; Xinhua Liu; Vesna Ilievski; Vesna Slavkovich; Shafiul Alam; Abu B. Siddique; Joseph H. Graziano; Mary V. Gamble

Chronic exposure to inorganic arsenic (InAs) through drinking water is a major problem worldwide. InAs undergoes hepatic methylation to form mono- and dimethyl arsenical species (MMA and DMA, respectively), facilitating arsenic elimination. Both reactions are catalyzed by arsenic (+3 oxidation state) methyltransferase (AS3MT) using S-adenosylmethionine (SAM) as the methyl donor, yielding the methylated product and S-adenosylhomocysteine (SAH), a potent product-inhibitor of AS3MT. SAM biosynthesis depends on folate- and cobalamin-dependent one-carbon metabolism. With the use of samples from 353 participants in the Folate and Oxidative Stress Study, our objective was to test the hypotheses that blood SAM and SAH concentrations are associated with arsenic methylation and that these associations differ by folate and cobalamin nutritional status. Blood SAM and SAH were measured by HPLC. Arsenic metabolites in blood and urine were measured by HPLC coupled to dynamic reaction cell inductively coupled plasma MS. In linear regression analyses, SAH was not associated with any of the arsenic metabolites. However, log(SAM) was negatively associated with log(% urinary InAs) (β: -0.11; 95% CI: -0.19, -0.02; P = 0.01), and folate and cobalamin nutritional status significantly modified associations between SAM and percentage of blood MMA (%bMMA) and percentage of blood DMA (%bDMA) (P = 0.02 and P = 0.01, respectively). In folate- and cobalamin-deficient individuals, log(SAM) was positively associated with %bMMA (β: 6.96; 95% CI: 1.86, 12.05; P < 0.01) and negatively associated with %bDMA (β: -6.19; 95% CI: -12.71, 0.32; P = 0.06). These findings suggest that when exposure to InAs is high, and methyl groups are limiting, SAM is used primarily for MMA synthesis rather than for DMA synthesis, contributing additional evidence that nutritional status may explain some of the interindividual differences in arsenic metabolism and, consequently, susceptibility to arsenic toxicity.


Environmental Health Perspectives | 2013

A dose-response study of arsenic exposure and global methylation of peripheral blood mononuclear cell DNA in Bangladeshi adults.

Megan M. Niedzwiecki; Megan N. Hall; Xinhua Liu; Julie Oka; Kristin N. Harper; Vesna Slavkovich; Vesna Ilievski; Diane Levy; Alexander van Geen; Jacob L. Mey; Shafiul Alam; Abu B. Siddique; Faruque Parvez; Joseph H. Graziano; Mary V. Gamble

Background: Several studies employing cell culture and animal models have suggested that arsenic (As) exposure induces global DNA hypomethylation. However, As has been associated with global DNA hypermethylation in human study populations. We hypothesized that this discrepancy may reflect a nonlinear relationship between As dose and DNA methylation. Objective: The objective of this study was to examine the dose–response relationship between As and global methylation of peripheral blood mononuclear cell (PBMC) DNA in apparently healthy Bangladeshi adults chronically exposed to a wide range of As concentrations in drinking water. Methods: Global PBMC DNA methylation, plasma folate, blood S-adenosylmethionine (SAM), and concentrations of As in drinking water, blood, and urine were measured in 320 adults. DNA methylation was measured using the [3H]-methyl incorporation assay, which provides disintegration-per-minute (DPM) values that are negatively associated with global DNA methylation. Results: Water, blood, and urinary As were positively correlated with global PBMC DNA methylation (p < 0.05). In multivariable-adjusted models, 1-μg/L increases in water and urinary As were associated with 27.6-unit (95% CI: 6.3, 49.0) and 22.1-unit (95% CI: 0.5, 43.8) decreases in DPM per microgram DNA, respectively. Categorical models indicated that estimated mean levels of PBMC DNA methylation were highest in participants with the highest As exposures. Conclusions: These results suggest that As is positively associated with global methylation of PBMC DNA over a wide range of drinking water As concentrations. Further research is necessary to elucidate underlying mechanisms and physiologic implications. Citation: Niedzwiecki MM, Hall MN, Liu X, Oka J, Harper KN, Slavkovich V, Ilievski V, Levy D, van Geen A, Mey JL, Alam S, Siddique AB, Parvez F, Graziano JH, Gamble MV. 2013. A dose–response study of arsenic exposure and global methylation of peripheral blood mononuclear cell DNA in Bangladeshi adults. Environ Health Perspect 121:1306–1312; http://dx.doi.org/10.1289/ehp.1206421


Cancer Epidemiology, Biomarkers & Prevention | 2015

Sex-Specific Associations of Arsenic Exposure with Global DNA Methylation and Hydroxymethylation in Leukocytes: Results from Two Studies in Bangladesh

Megan M. Niedzwiecki; Xinhua Liu; Marni Hall; Thomas T; Slavkovich; Ilievski; Diane Levy; Shafiul Alam; Abu B. Siddique; Faruque Parvez; Joseph H. Graziano; Mary V. Gamble

Background: Depletion of global 5-hydroxymethylcytosine (5-hmC) is observed in human cancers and is strongly implicated in skin cancer development. Although arsenic (As)—a class I human carcinogen linked to skin lesion and cancer risk—is known to be associated with changes in global %5-methylcytosine (%5-mC), its influence on 5-hmC has not been widely studied. Methods: We evaluated associations of As in drinking water, urine, and blood with global %5-mC and %5-hmC in two studies of Bangladeshi adults: (i) leukocyte DNA in the Nutritional Influences on Arsenic Toxicity study (n = 196; 49% male, 19–66 years); and (ii) peripheral blood mononuclear cell DNA in the Folate and Oxidative Stress study (n = 375; 49% male, 30–63 years). Results: Overall, As was not associated with global %5-mC or %5-hmC. Sex-specific analyses showed that associations of As exposure with global %5-hmC were positive in males and negative in females (P for interaction < 0.01). Analyses examining interactions by elevated plasma total homocysteine (tHcys), an indicator of B-vitamin deficiency, found that tHcys also modified the association between As and global %5-hmC (P for interaction < 0.10). Conclusion: In two samples, we observed associations between As exposure and global %5-hmC in blood DNA that were modified by sex and tHcys. Impact: Our findings suggest that As induces sex-specific changes in 5-hmC, an epigenetic mark that has been associated with cancer. Future research should explore whether altered %5-hmC is a mechanism underlying the sex-specific influences of As on skin lesion and cancer outcomes. Cancer Epidemiol Biomarkers Prev; 24(11); 1748–57. ©2015 AACR.


Environmental Health Perspectives | 2009

Influence of Cobalamin on Arsenic Metabolism in Bangladesh

Megan N. Hall; Xinhua Liu; Vesna Slavkovich; Vesna Ilievski; Zhongyuan Mi; Shafiul Alam; Pam Factor-Litvak; Habibul Ahsan; Joseph H. Graziano; Mary V. Gamble

Background Arsenic is a carcinogen to which 35 million people in Bangladesh are chronically exposed. The enzymatic transfer of methyl groups to inorganic As (iAs) generates monomethylarsonic (MMA) and dimethylarsinic acids (DMA) and facilitates urinary As (uAs) elimination. This process is dependent on one-carbon metabolism, a pathway in which folate and cobalamin have essential roles in the recruitment and transfer of methyl groups. Although DMAV is the least toxic metabolite, increasing evidence suggests that MMAIII may be the most cytotoxic and genotoxic As intermediary metabolite. Objective We examined the associations between plasma cobalamin and uAs metabolites. Methods We conducted a cross-sectional study of 778 Bangladeshi adults in which we over-sampled cobalamin-deficient participants. Participants provided blood samples for the measurement of plasma cobalamin and urine specimens for As measurements. Results Cobalamin was inversely associated with the proportion of total uAs excreted as iAs (%iAs) [unstandardized regression coefficient (b) = –0.10; 95% confidence interval (CI), −0.17 to −0.02; p = 0.01] and positively associated with %MMA (b = 0.12; 95% CI, 0.05 to 0.20; p = 0.001). Both of these associations were stronger among folate-sufficient participants (%iAs: b = −0.17; 95% CI, −0.30 to −0.03; p = 0.02. %MMA: b = 0.20; 95% CI, 0.11 to 0.30; p < 0.0001), and the differences by folate status were statistically significant. Conclusions In this group of Bangladeshi adults, cobalamin appeared to facilitate the first As methylation step among folate-sufficient individuals. Given the toxicity of MMAIII, our findings suggest that in contrast to folate, cobalamin may not favorably influence As metabolism.


Epigenetics | 2013

Blood glutathione redox status and global methylation of peripheral blood mononuclear cell DNA in Bangladeshi adults

Megan M. Niedzwiecki; Megan N. Hall; Xinhua Liu; Julie Oka; Kristin N. Harper; Vesna Slavkovich; Vesna Ilievski; Diane Levy; Alexander van Geen; Jacob L. Mey; Shafiul Alam; Abu B. Siddique; Faruque Parvez; Joseph H. Graziano; Mary V. Gamble

Oxidative stress and DNA methylation are metabolically linked through the relationship between one-carbon metabolism and the transsulfuration pathway, but possible modulating effects of oxidative stress on DNA methylation have not been extensively studied in humans. Enzymes involved in DNA methylation, including DNA methyltransferases and histone deacetylases, may show altered activity under oxidized cellular conditions. Additionally, in vitro studies suggest that glutathione (GSH) depletion leads to global DNA hypomethylation, possibly through the depletion of S-adenosylmethionine (SAM). We tested the hypothesis that a more oxidized blood GSH redox status is associated with decreased global peripheral blood mononuclear cell (PBMC) DNA methylation in a sample of Bangladeshi adults. Global PBMC DNA methylation and whole blood GSH, glutathione disulfide (GSSG), and SAM concentrations were measured in 320 adults. DNA methylation was measured by using the [3H]-methyl incorporation assay; values are inversely related to global DNA methylation. Whole blood GSH redox status (Eh) was calculated using the Nernst equation. We found that a more oxidized blood GSH Eh was associated with decreased global DNA methylation (B ± SE, 271 ± 103, p = 0.009). Blood SAM and blood GSH were associated with global DNA methylation, but these relationships did not achieve statistical significance. Our findings support the hypothesis that a more oxidized blood GSH redox status is associated with decreased global methylation of PBMC DNA. Furthermore, blood SAM does not appear to mediate this association. Future research should explore mechanisms through which cellular redox might influence global DNA methylation.


Free Radical Biology and Medicine | 2014

Interaction of plasma glutathione redox and folate deficiency on arsenic methylation capacity in Bangladeshi adults

Megan M. Niedzwiecki; Megan N. Hall; Xinhua Liu; Vesna Slavkovich; Vesna Ilievski; Diane Levy; Shafiul Alam; Abu B. Siddique; Faruque Parvez; Joseph H. Graziano; Mary V. Gamble

Inorganic arsenic(As) is metabolized through a series of methylation reactions catalyzed by arsenic(III)-methyltransferase (AS3MT), resulting in the generation of monomethylarsonic (MMAs) and dimethylarsinic acids (DMAs). AS3MT activity requires the presence of the methyl donor S-adenosylmethionine, a product of folate-dependent one-carbon metabolism, and a reductant. Although glutathione (GSH), the primary endogenous antioxidant, is not required for As methylation, GSH stimulates As methylation rates in vitro. However, the relationship between GSH redox and As methylation capacity in humans is unknown. We wished to test the hypothesis that a more oxidized plasma GSH redox status is associated with decreased As methylation capacity and examine whether these associations are modified by folate nutritional status. Concentrations of plasma GSH and GSSG, plasma folate, total blood As (bAs), total urinary As (uAs), and uAs metabolites were assessed in a cross-sectional study of n=376 Bangladeshi adults who were chronically exposed to As in drinking water. We observed that a decreased plasma GSH/GSSG ratio (reflecting a more oxidized redox state) was significantly associated with increased urinary %MMA, decreased urinary %DMA, and increased total bAs in folate-deficient individuals (plasma folate ≤ 9.0 nmol/L). Concentrations of plasma GSH and GSSG were independently associated with increased and decreased As methylation capacity, respectively. No significant associations were observed in folate-sufficient individuals, and interactions by folate status were statistically significant. Our findings suggest that GSH/GSSG redox regulation might contribute to the large interindividual variation in As methylation capacity observed in human populations.

Collaboration


Dive into the Shafiul Alam's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge