Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Shenglong Wang is active.

Publication


Featured researches published by Shenglong Wang.


BioTechniques | 2004

Linear mRNA amplification from as little as 5 ng total RNA for global gene expression analysis.

Alan Dafforn; Pengchin Chen; Glenn Deng; Michael Herrler; Dawn Iglehart; Sriveda Koritala; Susan Lato; Susheela Pillarisetty; Reshma Purohit; Martin Junhong Wang; Shenglong Wang; Nurith Kurn

Gene expression analysis has become an invaluable tool for understanding gene function and regulation. However, global expression analysis requires large RNA quantities or RNA preamplification. We describe an isothermal messenger RNA (mRNA) amplification method, Ribo-SPIA, which generates micrograms of labeled cDNA from 5 ng of total RNA in 1 day for analysis on arrays or by PCR quantification. Highly reproducible GeneChip array performance (R2 > 0.95) was achieved with independent reactions starting with 5-100 ng Universal Human Reference total RNA. Targets prepared by the Ribo-SPIA procedure (20 ng total RNA input) or the Affymetrix Standard Protocol (10 microg total RNA) perform similarly, as indicated by gene call concordance (86%) and good correlation of differential gene expression determination (R2 = 0.82). Accuracy of transcript representation in cDNA generated by the Ribo-SPIA procedure was also demonstrated by PCR quantification of 33 transcripts, comparing differential expression in amplified and nonamplified cDNA (R2 = 0.97 over a range of nearly 10(6) infold change). Thus Ribo-SPIA amplification of mRNA is rapid, robust, highly accurate and reproducible, and sensitive enough to allow quantification of very low abundance transcripts.


Cancer Prevention Research | 2011

Characterizing the Impact of Smoking and Lung Cancer on the Airway Transcriptome Using RNA-Seq

Jennifer Beane; Jessica Vick; Frank Schembri; Christina Anderlind; Adam C. Gower; Joshua D. Campbell; Lingqi Luo; Xiaohui Zhang; Ji Xiao; Yuriy O. Alekseyev; Shenglong Wang; Shawn Levy; Pierre P. Massion; Marc E. Lenburg; Avrum Spira

Cigarette smoke creates a molecular field of injury in epithelial cells that line the respiratory tract. We hypothesized that transcriptome sequencing (RNA-Seq) will enhance our understanding of the field of molecular injury in response to tobacco smoke exposure and lung cancer pathogenesis by identifying gene expression differences not interrogated or accurately measured by microarrays. We sequenced the high-molecular-weight fraction of total RNA (>200 nt) from pooled bronchial airway epithelial cell brushings (n = 3 patients per pool) obtained during bronchoscopy from healthy never smoker (NS) and current smoker (S) volunteers and smokers with (C) and without (NC) lung cancer undergoing lung nodule resection surgery. RNA-Seq libraries were prepared using 2 distinct approaches, one capable of capturing non-polyadenylated RNA (the prototype NuGEN Ovation RNA-Seq protocol) and the other designed to measure only polyadenylated RNA (the standard Illumina mRNA-Seq protocol) followed by sequencing generating approximately 29 million 36 nt reads per pool and approximately 22 million 75 nt paired-end reads per pool, respectively. The NuGEN protocol captured additional transcripts not detected by the Illumina protocol at the expense of reduced coverage of polyadenylated transcripts, while longer read lengths and a paired-end sequencing strategy significantly improved the number of reads that could be aligned to the genome. The aligned reads derived from the two complementary protocols were used to define the compendium of genes expressed in the airway epithelium (n = 20,573 genes). Pathways related to the metabolism of xenobiotics by cytochrome P450, retinol metabolism, and oxidoreductase activity were enriched among genes differentially expressed in smokers, whereas chemokine signaling pathways, cytokine–cytokine receptor interactions, and cell adhesion molecules were enriched among genes differentially expressed in smokers with lung cancer. There was a significant correlation between the RNA-Seq gene expression data and Affymetrix microarray data generated from the same samples (P < 0.001); however, the RNA-Seq data detected additional smoking- and cancer-related transcripts whose expression was were either not interrogated by or was not found to be significantly altered when using microarrays, including smoking-related changes in the inflammatory genes S100A8 and S100A9 and cancer-related changes in MUC5AC and secretoglobin (SCGB3A1). Quantitative real-time PCR confirmed differential expression of select genes and non-coding RNAs within individual samples. These results demonstrate that transcriptome sequencing has the potential to provide new insights into the biology of the airway field of injury associated with smoking and lung cancer. The measurement of both coding and non-coding transcripts by RNA-Seq has the potential to help elucidate mechanisms of response to tobacco smoke and to identify additional biomarkers of lung cancer risk and novel targets for chemoprevention. Cancer Prev Res; 4(6); 803–17. ©2011 AACR.


BMC Genomics | 2008

Complementary RNA amplification methods enhance microarray identification of transcripts expressed in the C. elegans nervous system

Joseph D. Watson; Shenglong Wang; Stephen E Von Stetina; W. Clay Spencer; Shawn Levy; Phillip Dexheimer; Nurith Kurn; Joe Don Heath; David M. Miller

BackgroundDNA microarrays provide a powerful method for global analysis of gene expression. The application of this technology to specific cell types and tissues, however, is typically limited by small amounts of available mRNA, thereby necessitating amplification. Here we compare microarray results obtained with two different methods of RNA amplification to profile gene expression in the C. elegans larval nervous system.ResultsWe used the mRNA-tagging strategy to isolate transcripts specifically from C. elegans larval neurons. The WT-Ovation Pico System (WT-Pico) was used to amplify 2 ng of pan-neural RNA to produce labeled cDNA for microarray analysis. These WT-Pico-derived data were compared to microarray results obtained with a labeled aRNA target generated by two rounds of In Vitro Transcription (IVT) of 25 ng of pan-neural RNA. WT-Pico results in a higher fraction of present calls than IVT, a finding consistent with the proposal that DNA-DNA hybridization results in lower mismatch signals than the RNA-DNA heteroduplexes produced by IVT amplification. Microarray data sets from these samples were compared to a reference profile of all larval cells to identify transcripts with elevated expression in neurons. These results were validated by the high proportion of known neuron-expressed genes detected in these profiles and by promoter-GFP constructs for previously uncharacterized genes in these data sets. Together, the IVT and WT-Pico methods identified 2,173 unique neuron-enriched transcripts. Only about half of these transcripts (1,044), however, are detected as enriched by both IVT and WT-Pico amplification.ConclusionWe show that two different methods of RNA amplification, IVT and WT-Pico, produce valid microarray profiles of gene expression in the C. elegans larval nervous system with a low rate of false positives. However, our results also show that each method of RNA amplification detects a unique subset of bona fide neural-enriched transcripts and thus a wider array of authentic neural genes are identified by the combination of these data sets than by the microarray profiles obtained with either method of RNA amplification alone. With its relative ease of implementation and greater sensitivity, WT-Pico is the preferred method of amplification for cases in which sample RNA is limiting.


Integrative Biology | 2009

Genome-wide transcriptome analysis of 150 cell samples

Daniel Irimia; Michael Mindrinos; Aman Russom; Wenzhong Xiao; Julie Wilhelmy; Shenglong Wang; Joe Don Heath; Nurith Kurn; Ronald G. Tompkins; Ronald W. Davis; Mehmet Toner

A major challenge in molecular biology is interrogating the human transcriptome on a genome wide scale when only a limited amount of biological sample is available for analysis. Current methodologies using microarray technologies for simultaneously monitoring mRNA transcription levels require nanogram amounts of total RNA. To overcome the sample size limitation of current technologies, we have developed a method to probe the global gene expression in biological samples as small as 150 cells, or the equivalent of approximately 300 pg total RNA. The new method employs microfluidic devices for the purification of total RNA from mammalian cells and ultra-sensitive whole transcriptome amplification techniques. We verified that the RNA integrity is preserved through the isolation process, accomplished highly reproducible whole transcriptome analysis, and established high correlation between repeated isolations of 150 cells and the same cell culture sample. We validated the technology by demonstrating that the combined microfluidic and amplification protocol is capable of identifying biological pathways perturbed by stimulation, which are consistent with the information recognized in bulk-isolated samples.


Clinical Chemistry | 2005

Novel isothermal, linear nucleic acid amplification systems for highly multiplexed applications.

Nurith Kurn; Pengchin Chen; Joe Don Heath; Anne Kopf-Sill; Kathryn M. Stephens; Shenglong Wang


Archive | 2009

Isothermal Nucleic Acid Amplification Methods and Compositions

Nurith Kurn; Shenglong Wang


Archive | 2004

Global amplification using a randomly primed composite primer

Nurith Kurn; Shenglong Wang


Archive | 2004

Global amplification using random priming by a composite primer

Nurith Kurn; Shenglong Wang


Archive | 2010

Methods, compositions, and kits for generating nucleic acid products substantially free of template nucleic acid

Nurith Kurn; Shenglong Wang


Archive | 2006

Improved nucleic acid amplification procedure

Nurith Kurn; Shenglong Wang

Collaboration


Dive into the Shenglong Wang's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge