Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Shiwani Sharma is active.

Publication


Featured researches published by Shiwani Sharma.


Nature Genetics | 2011

Genome-wide association study identifies susceptibility loci for open angle glaucoma at TMCO1 and CDKN2B-AS1

Kathryn P. Burdon; Stuart MacGregor; Alex W. Hewitt; Shiwani Sharma; Glyn Chidlow; Richard Ad Mills; Patrick Danoy; Robert J. Casson; Ananth C. Viswanathan; Jimmy Z. Liu; John Landers; Anjali K. Henders; John P. M. Wood; Emmanuelle Souzeau; April Crawford; Paul Leo; Jie Jin Wang; Elena Rochtchina; Dale R. Nyholt; Nicholas G. Martin; Grant W. Montgomery; Paul Mitchell; Matthew A. Brown; David A. Mackey; Jamie E. Craig

We report a genome-wide association study for open-angle glaucoma (OAG) blindness using a discovery cohort of 590 individuals with severe visual field loss (cases) and 3,956 controls. We identified associated loci at TMCO1 (rs4656461[G] odds ratio (OR) = 1.68, P = 6.1 × 10−10) and CDKN2B-AS1 (rs4977756[A] OR = 1.50, P = 4.7 × 10−9). We replicated these associations in an independent cohort of cases with advanced OAG (rs4656461 P = 0.010; rs4977756 P = 0.042) and two additional cohorts of less severe OAG (rs4656461 combined discovery and replication P = 6.00 × 10−14, OR = 1.51, 95% CI 1.35–1.68; rs4977756 combined P = 1.35 × 10−14, OR = 1.39, 95% CI 1.28–1.51). We show retinal expression of genes at both loci in human ocular tissues. We also show that CDKN2A and CDKN2B are upregulated in the retina of a rat model of glaucoma.


Investigative Ophthalmology & Visual Science | 2011

Association of polymorphisms in the hepatocyte growth factor gene promoter with keratoconus

Kathryn P. Burdon; Stuart MacGregor; Yelena Bykhovskaya; Sharhbanou Javadiyan; Xiaohui Li; Kate J. Laurie; Dorota Muszynska; Richard Lindsay; Judith Lechner; Talin Haritunians; Anjali K. Henders; Durga P. Dash; David S. Siscovick; Seema Anand; Anthony J. Aldave; Douglas John Coster; Loretta Szczotka-Flynn; Richard Arthur Mills; Sudha K. Iyengar; Kent D. Taylor; Tony Phillips; Grant W. Montgomery; Jerome I. Rotter; Alex W. Hewitt; Shiwani Sharma; Yaron S. Rabinowitz; Colin E. Willoughby; Jamie E. Craig

PURPOSE Keratoconus is a progressive disorder of the cornea that can lead to severe visual impairment or blindness. Although several genomic regions have been linked to rare familial forms of keratoconus, no genes have yet been definitively identified for common forms of the disease. METHODS Two genome-wide association scans were undertaken in parallel. The first used pooled DNA from an Australian cohort, followed by typing of top-ranked single-nucleotide polymorphisms (SNPs) in individual DNA samples. The second was conducted in individually genotyped patients, and controls from the USA. Tag SNPs around the hepatocyte growth factor (HGF) gene were typed in three additional replication cohorts. Serum levels of HGF protein in normal individuals were assessed with ELISA and correlated with genotype. RESULTS The only SNP observed to be associated in both the pooled discovery and primary replication cohort was rs1014091, located upstream of the HGF gene. The nearby SNP rs3735520 was found to be associated in the individually typed discovery cohort (P = 6.1 × 10(-7)). Genotyping of tag SNPs around HGF revealed association at rs3735520 and rs17501108/rs1014091 in four of the five cohorts. Meta-analysis of all five datasets together yielded suggestive P values for rs3735520 (P = 9.9 × 10(-7)) and rs17501108 (P = 9.9 × 10(-5)). In addition, SNP rs3735520 was found to be associated with serum HGF level in normal individuals (P = 0.036). CONCLUSIONS Taken together, these results implicate genetic variation at the HGF locus with keratoconus susceptibility.


Nature Genetics | 2014

Common variants near ABCA1 , AFAP1 and GMDS confer risk of primary open-angle glaucoma

Puya Gharahkhani; Kathryn P. Burdon; Rhys Fogarty; Shiwani Sharma; Alex W. Hewitt; Sarah Martin; Matthew H. Law; Katie Cremin; Jessica N. Cooke Bailey; Stephanie Loomis; Louis R. Pasquale; Jonathan L. Haines; Michael A. Hauser; Ananth C. Viswanathan; Peter McGuffin; Fotis Topouzis; Paul J. Foster; Stuart L. Graham; Robert J. Casson; Mark Chehade; Andrew White; Tiger Zhou; Emmanuelle Souzeau; John Landers; Jude Fitzgerald; Sonja Klebe; Jonathan B Ruddle; Ivan Goldberg; Paul R. Healey; Richard Arthur Mills

Primary open-angle glaucoma (POAG) is a major cause of irreversible blindness worldwide. We performed a genome-wide association study in an Australian discovery cohort comprising 1,155 cases with advanced POAG and 1,992 controls. We investigated the association of the top SNPs from the discovery stage in two Australian replication cohorts (932 cases and 6,862 controls total) and two US replication cohorts (2,616 cases and 2,634 controls total). Meta-analysis of all cohorts identified three loci newly associated with development of POAG. These loci are located upstream of ABCA1 (rs2472493[G], odds ratio (OR) = 1.31, P = 2.1 × 10−19), within AFAP1 (rs4619890[G], OR = 1.20, P = 7.0 × 10−10) and within GMDS (rs11969985[G], OR = 1.31, P = 7.7 × 10−10). Using RT-PCR and immunolabeling, we show that these genes are expressed within human retina, optic nerve and trabecular meshwork and that ABCA1 and AFAP1 are also expressed in retinal ganglion cells.


European Journal of Human Genetics | 2012

Association of TCF4 and CLU polymorphisms with Fuchs endothelial dystrophy and implication of CLU and TGFBI proteins in the disease process

Abraham Kuot; Alex W. Hewitt; Kim M. Griggs; Sonja Klebe; Richard P. Mills; Vishal Jhanji; Jamie E. Craig; Shiwani Sharma; Kathryn P. Burdon

Fuchs’ endothelial dystrophy (FED) is a disease affecting the corneal endothelium. Recent studies reported significant association of polymorphisms in the TCF4 (transcription factor 4) gene, and a borderline association of PTPRG (protein tyrosine phosphatase, receptor type, G) variants with late-onset FED in Caucasians from the United States. Association of TCF4 has also been reported in the Chinese population. We aimed to determine association of the reported polymorphisms in TCF4 and PTPRG, and association of polymorphisms in the candidate genes ZEB1 (zinc-finger E-box binding homoebox 1), COL8A2 (collagen, type VIII, alpha 2), TGFBI (transforming growth factor, β-induced) and CLU (clusterin) in Australian cases. We also compared the expression of TGFBI and CLU proteins between FED and normal whole corneas. In all, 30 single-nucleotide polymorphisms (SNPs) from the candidate genes were genotyped in 103 cases and 275 controls. Each SNP and haplotype was assessed for association with the disease. SNP analysis identified an association of TCF4 (rs613872 (P=5.25 × 10−15, OR=4.05), rs9954153 (P=3.37 × 10−7, OR=2.58), rs2286812 (P=4.23 × 10−6, OR=2.55) and rs17595731 (P=3.57 × 10−5, OR=3.79)), CLU (rs17466684; P=0.003, OR=1.85) and one haplotype of TGFBI SNPs (P=0.011, OR=2.29) with FED in Caucasian Australians. No evidence for genetic association of PTPRG, ZEB1 and COL8A2 was found. Immunohistochemistry showed differential expression of CLU and TGFBI proteins in FED-affected compared with normal corneas. In conclusion, variation in TCF4, CLU and TGFBI, but not PTPRG, ZEB1 and COL8A2 genes are associated with FED in Caucasian Australian cases. Differential expression of CLU and TGFBI proteins in FED-affected corneas provides novel insights into the disease mechanism.


Genome Research | 2009

Rapid inexpensive genome-wide association using pooled whole blood

Jamie E. Craig; Alex W. Hewitt; Amy E. McMellon; Anjali K. Henders; Lingjun Ma; Leanne Wallace; Shiwani Sharma; Kathryn P. Burdon; Peter M. Visscher; Grant W. Montgomery; Stuart Macgregor

Genome-wide association studies (GWAS) have now successfully identified important genetic variants associated with many human traits and diseases. The high cost of genotyping arrays in large data sets remains the major barrier to wider utilization of GWAS. We have developed a novel method in which whole blood from cases and controls, respectively, is pooled prior to DNA extraction for genotyping. We demonstrate proof of principle by clearly identifying the associated variants for eye color, age-related macular degeneration, and pseudoexfoliation syndrome in cohorts not previously studied. Blood pooling has the potential to reduce GWAS cost by several orders of magnitude and dramatically shorten gene discovery time. This method has profound implications for translation of modern genetic approaches to a multitude of diseases and traits yet to be analyzed by GWAS, and will enable developing nations to participate in GWAS.


PLOS ONE | 2015

Measurement of systemic mitochondrial function in advanced Primary Open-Angle Glaucoma and leber hereditary optic neuropathy

Nicole J. Van Bergen; Jonathan G. Crowston; Jamie E. Craig; Kathryn P. Burdon; Lisa S. Kearns; Shiwani Sharma; Alex W. Hewitt; David A. Mackey; Ian A. Trounce

Primary Open Angle Glaucoma (POAG) is a common neurodegenerative disease characterized by the selective and gradual loss of retinal ganglion cells (RGCs). Aging and increased intraocular pressure (IOP) are glaucoma risk factors; nevertheless patients deteriorate at all levels of IOP, implying other causative factors. Recent evidence presents mitochondrial oxidative phosphorylation (OXPHOS) complex-I impairments in POAG. Leber Hereditary Optic Neuropathy (LHON) patients suffer specific and rapid loss of RGCs, predominantly in young adult males, due to complex-I mutations in the mitochondrial genome. This study directly compares the degree of OXPHOS impairment in POAG and LHON patients, testing the hypothesis that the milder clinical disease in POAG is due to a milder complex-I impairment. To assess overall mitochondrial capacity, cells can be forced to produce ATP primarily from mitochondrial OXPHOS by switching the media carbon source to galactose. Under these conditions POAG lymphoblasts grew 1.47 times slower than controls, whilst LHON lymphoblasts demonstrated a greater degree of growth impairment (2.35 times slower). Complex-I enzyme specific activity was reduced by 18% in POAG lymphoblasts and by 29% in LHON lymphoblasts. We also assessed complex-I ATP synthesis, which was 19% decreased in POAG patients and 17% decreased in LHON patients. This study demonstrates both POAG and LHON lymphoblasts have impaired complex-I, and in the majority of aspects the functional defects in POAG were milder than LHON, which could reflect the milder disease development of POAG. This new evidence places POAG in the spectrum of mitochondrial optic neuropathies and raises the possibility for new therapeutic targets aimed at improving mitochondrial function.


PLOS ONE | 2013

Mutations in the EPHA2 gene are a major contributor to inherited cataracts in South-Eastern Australia.

Alpana Dave; Kate J. Laurie; Sandra E Staffieri; Deepa A Taranath; David A. Mackey; Paul Mitchell; Jie Jin Wang; Jamie E. Craig; Kathryn P. Burdon; Shiwani Sharma

Congenital cataract is the most common cause of treatable visual impairment in children worldwide. Mutations in many different genes lead to congenital cataract. Recently, mutations in the receptor tyrosine kinase gene, EPHA2, have been found to cause congenital cataract in six different families. Although these findings have established EPHA2 as a causative gene, the total contribution of mutations in this gene to congenital cataract is unknown. In this study, for the first time, a population-based approach was used to investigate the frequency of disease causing mutations in the EPHA2 gene in inherited cataract cases in South-Eastern Australia. A cohort of 84 familial congenital or juvenile cataract index cases was screened for mutations in the EPHA2 gene by direct sequencing. Novel changes were assessed for segregation with the disease within the family and in unrelated controls. Microsatellite marker analysis was performed to establish any relationship between families carrying the same mutation. We report a novel congenital cataract causing mutation c.1751C>T in the EPHA2 gene and the previously reported splice mutation c.2826-9G>A in two new families. Additionally, we report a rare variant rs139787163 potentially associated with increased susceptibility to cataract. Thus mutations in EPHA2 account for 4.7% of inherited cataract cases in South-Eastern Australia. Interestingly, the identified rare variant provides a link between congenital and age-related cataract.


Investigative Ophthalmology & Visual Science | 2012

Association of genetic variants in the TMCO1 gene with clinical parameters related to glaucoma and characterization of the protein in the eye.

Shiwani Sharma; Kathryn P. Burdon; Glyn Chidlow; Sonja Klebe; April Crawford; David P. Dimasi; Alpana Dave; Sarah Martin; Shahrbanou Javadiyan; John P. M. Wood; Robert J. Casson; Patrick Danoy; Kim M. Griggs; Alex W. Hewitt; John Landers; Paul Mitchell; David A. Mackey; Jamie E. Craig

PURPOSE Glaucoma is the leading cause of irreversible blindness worldwide. Primary open angle glaucoma (POAG) is the most common subtype. We recently reported association of genetic variants at chromosomal loci, 1q24 and 9p21, with POAG. In this study, we determined association of the most significantly associated single nucleotide polymorphism (SNP) rs4656461, at 1q24 near the TMCO1 gene, with the clinical parameters related to glaucoma risk and diagnosis, and determined ocular expression and subcellular localization of the human TMCO1 protein to understand the mechanism of its involvement in POAG. METHODS Association of SNP rs4656461 with five clinical parameters was assessed in 1420 POAG cases using linear regression. The TMCO1 gene was screened for mutations in 95 cases with a strong family history and advanced disease. Ocular expression and subcellular localization of the TMCO1 protein were determined by immunolabeling and as GFP-fusion. RESULTS The data suggest that individuals homozygous for the rs4656461 risk allele (GG) are 4 to 5 years younger at diagnosis than noncarriers of this allele. Our data demonstrate expression of the TMCO1 protein in most tissues in the human eye, including the trabecular meshwork and retina. However, the subcellular localization differs from that reported in other studies. We demonstrate that the endogenous protein localizes to the cytoplasm and nucleus in vivo and ex vivo. In the nucleus, the protein localizes to the nucleoli. CONCLUSIONS This study shows a relationship between genetic variation in and around TMCO1 with age at diagnosis of POAG and provides clues to the potential cellular function/s of this gene.


Journal of Proteome Research | 2011

MALDI-MS-Imaging of Whole Human Lens Capsule

Maurizio Ronci; Shiwani Sharma; Tim Chataway; Kathryn P. Burdon; Sarah Martin; Jamie E. Craig; Nicolas H. Voelcker

The ocular lens capsule is a smooth, transparent basement membrane that encapsulates the lens and is composed of a rigid network of interacting structural proteins and glycosaminoglycans. During cataract surgery, the anterior lens capsule is routinely removed in the form of a circular disk. We considered that the excised capsule could be easily prepared for matrix-assisted laser desorption/ionization time-of-flight mass spectrometry imaging (MALDI-MSI) analysis. MALDI-MSI is a powerful tool to elucidate the spatial distribution of small molecules, peptides, and proteins within tissues. Here, we apply this molecular imaging technique to analyze the freshly excised human lens capsule en face. We demonstrate that novel information about the distribution of proteins by MALDI-MSI can be obtained from this highly compact connective tissue, having no evident histo-morphological characteristics. Trypsin digestion carried out on-tissue is shown to improve MALDI-MSI analysis of human lens capsules and affords high repeatability. Most importantly, MALDI-MSI analysis reveals a concentric distribution pattern of proteins such as apolipoprotein E (ApoE) and collagen IV alpha-1 on the anterior surface of surgically removed lens capsule, which may indicate direct or indirect effects of environmental and mechanical stresses on the human ocular lens.


Ultramicroscopy | 2011

Atomic force microscopy-based antibody recognition imaging of proteins in the pathological deposits in Pseudoexfoliation Syndrome

Rhiannon Creasey; Shiwani Sharma; Christopher T. Gibson; Jamie E. Craig; Andreas Ebner; Thomas Becker; Peter Hinterdorfer; Nicolas H. Voelcker

The phenomenon of protein aggregation is of considerable interest to various disciplines, including the field of medicine. A range of disease pathologies are associated with this phenomenon. One of the ocular diseases hallmarked by protein aggregation is the Pseudoexfoliation (PEX) Syndrome. This condition is characterized by the deposition of insoluble proteinaceous material on the anterior human lens capsule. Genomic and proteomic analyses have revealed an association of specific genetic markers and various proteins, respectively, with PEX syndrome. However, the ultrastructure of the protein aggregates is poorly characterized. This study seeks to build capacity to determine the molecular nature of PEX aggregates on human lens capsules in their native state by AFM-based antibody recognition imaging. Lysyl oxidase-Like 1 (LOXL1), a protein identified as a component of PEX aggregates, is detected by an antibody-modified AFM probe. Topographical AFM images and antibody recognition images are obtained using three AFM-based techniques: TREC, phase and force-volume imaging. LOXL1 is found to be present on the lens capsule surface, and is localized around fibrous protein aggregates. Our evaluation shows that TREC imaging is best suited for human tissue imaging and holds significant potential for imaging of human disease tissues in their native state.

Collaboration


Dive into the Shiwani Sharma's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David A. Mackey

University of Western Australia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

John Landers

University of Massachusetts Medical School

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge