Shun Washiyama
North Carolina State University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Shun Washiyama.
Applied Physics Express | 2011
Shun Washiyama; Seiji Mita; Kazuhiro Suzuki; Atsuhito Sawabe
The coalescence of epitaxial lateral overgrowth (ELO)-diamonds from stripe-patterned diamond nucleation formed on (001) Ir/MgO has been investigated. Scanning electron microscopy showed only continuous macro steps on the coalesced ELO-diamond layers. Cross-sectional Raman mappings for the 1332 cm-1 diamond peak revealed that ELO regions including coalescence boundaries had a lower full width at half maximum value than regions vertically grown on a nucleation layer. Continuously observed strong tensile strains in ELO regions indicated that additional defect formation to relax the lattice was suppressed even after the coalescence. These results showed that the ELO diamond process could be used to obtain high crystalline diamond films by heteroepitaxy.
Journal of Applied Physics | 2016
Felix Kaess; Seiji Mita; Jingqiao Xie; Pramod Reddy; Andrew Klump; Luis H. Hernandez-Balderrama; Shun Washiyama; Alexander Franke; Ronny Kirste; A. Hoffmann; Ramon Collazo; Zlatko Sitar
In the low doping range below 1 × 1017 cm−3, carbon was identified as the main defect attributing to the sudden reduction of the electron mobility, the electron mobility collapse, in n-type GaN grown by low pressure metalorganic chemical vapor deposition. Secondary ion mass spectroscopy has been performed in conjunction with C concentration and the thermodynamic Ga supersaturation model. By controlling the ammonia flow rate, the input partial pressure of Ga precursor, and the diluent gas within the Ga supersaturation model, the C concentration in Si-doped GaN was controllable from 6 × 1019 cm−3 to values as low as 2 × 1015 cm−3. It was found that the electron mobility collapsed as a function of free carrier concentration, once the Si concentration closely approached the C concentration. Lowering the C concentration to the order of 1015 cm−3 by optimizing Ga supersaturation achieved controllable free carrier concentrations down to 5 × 1015 cm−3 with a peak electron mobility of 820 cm2/V s without observing...
Applied Physics Letters | 2015
Pramod Reddy; Isaac Bryan; Zachary Bryan; James Tweedie; Shun Washiyama; Ronny Kirste; Seiji Mita; Ramon Collazo; Zlatko Sitar
In this work, the Fermi level and band alignment at c-plane surfaces and interfaces of AlGaN thin films grown on sapphire and native single crystalline AlN substrates were analyzed via x-ray photoelectron spectroscopy. The dependence of charge neutrality level (CNL) on Al composition is found to be linear with n-type Schottky barrier heights (Φbn) exhibiting an overall quadratic behavior due to bandgap bowing. A general theoretical expression for Schottky barrier height on AlGaN is determined as a function of Al composition and metal electronegativity utilizing the interface induced gap states (IFIGS) model and is corroborated with current-voltage (I-V) characterization on Ni-based Schottky diodes. The measured CNLs were used to determine the conduction and valence band offsets in AlGaN hetero-junctions according to the IFIGS and were found to be split approximately 2/3 and 1/3 of the bandgap, respectively, at interfaces with AlGaN having comparable Al and Ga concentrations. Nonlinearities in Φbn result i...
Proceedings of SPIE | 2016
Alexander Franke; Marc P. Hoffmann; Luis H. Hernandez-Balderrama; Felix Kaess; Isaac Bryan; Shun Washiyama; Milena Bobea; James Tweedie; Ronny Kirste; Michael Gerhold; Ramon Collazo; Zlatko Sitar
The maximum achievable reflectivity of current III-nitride Bragg reflectors in the UV-C spectral range is limited due to plastic relaxation of thick multilayer structures. Cracking due to a large mismatch of the thermal expansion and lattice constants between AlxGa1-xN/AlyGa1-yN alloys of different composition and the substrate at the heterointerface is the common failure mode. Strain engineering and strain relaxation concepts by the growth on a strain reduced Al0.85Ga0.15N template and the implementation of low temperature interlayers is demonstrated. A significant enhancement of the maximum reflectivity above 97% at a resonance wavelength of 270 nm due to an increase of the critical thickness of our AlN/Al0.65Ga0.35N DBRs to 1.45 μm (25.5 pairs) prove their potential. By comparing the growth of identical Bragg reflectors on different pseudo-templates, the accumulated mismatch strain energy in the DBR, not the dislocation density provided by the template/substrate, was identified to limit the critical thickness. To further enhance the reflectivity low temperature interlays were implemented into the DBR to partially relief the misfit strain. Relaxation is enabled by the nucleation of small surface domains facilitating misfit dislocation injection and glide. Detailed structural and optical investigations will be conducted to prove the influence of the LT-AlN interlayers on the strain state, structural integrity and reflectivity properties. Coherent growth and no structural and optical degradation of the Bragg mirror properties was observed proving the fully applicability of the relaxation concept to fabricate thick high reflectivity DBR and vertical cavity laser structures.
Applied Physics Letters | 2018
Isaac Bryan; Zachary Bryan; Shun Washiyama; Pramod Reddy; Benjamin E. Gaddy; Biplab Sarkar; M. Hayden Breckenridge; Qiang Guo; Milena Bobea; James Tweedie; Seiji Mita; Douglas L. Irving; Ramon Collazo; Zlatko Sitar
In order to understand the influence of dislocations on doping and compensation in Al-rich AlGaN, thin films were grown by metal organic chemical vapor deposition (MOCVD) on different templates on sapphire and low dislocation density single crystalline AlN. AlGaN grown on AlN exhibited the highest conductivity, carrier concentration, and mobility for any doping concentration due to low threading dislocation related compensation and reduced self-compensation. The onset of self-compensation, i.e., the “knee behavior” in conductivity, was found to depend only on the chemical potential of silicon, strongly indicating the cation vacancy complex with Si as the source of self-compensation. However, the magnitude of self-compensation was found to increase with an increase in dislocation density, and consequently, AlGaN grown on AlN substrates demonstrated higher conductivity over the entire doping range.
Journal of Applied Physics | 2016
Pramod Reddy; Shun Washiyama; Felix Kaess; M. Hayden Breckenridge; Luis H. Hernandez-Balderrama; Brian B. Haidet; Dorian Alden; Alexander Franke; Biplab Sarkar; Erhard Kohn; Ramon Collazo; Zlatko Sitar
In this work, we employed X-ray photoelectron spectroscopy to determine the band offsets and interface Fermi level at the heterojunction formed by stoichiometric silicon nitride deposited on AlxGa1-xN (of varying Al composition “x”) via low pressure chemical vapor deposition. Silicon nitride is found to form a type II staggered band alignment with AlGaN for all Al compositions (0 ≤ x ≤ 1) and present an electron barrier into AlGaN even at higher Al compositions, where Eg(AlGaN) > Eg(Si3N4). Further, no band bending is observed in AlGaN for x ≤ 0.6 and a reduced band bending (by ∼1 eV in comparison to that at free surface) is observed for x > 0.6. The Fermi level in silicon nitride is found to be at 3 eV with respect to its valence band, which is likely due to silicon (≡Si0/−1) dangling bonds. The presence of band bending for x > 0.6 is seen as a likely consequence of Fermi level alignment at Si3N4/AlGaN hetero-interface and not due to interface states. Photoelectron spectroscopy results are corroborated by current-voltage-temperature and capacitance-voltage measurements. A shift in the interface Fermi level (before band bending at equilibrium) from the conduction band in Si3N4/n-GaN to the valence band in Si3N4/p-GaN is observed, which strongly indicates a reduction in mid-gap interface states. Hence, stoichiometric silicon nitride is found to be a feasible passivation and dielectric insulation material for AlGaN at any composition.
Journal of Applied Physics | 2017
Pramod Reddy; Shun Washiyama; Felix Kaess; Ronny Kirste; Seiji Mita; Ramon Collazo; Zlatko Sitar
A theoretical framework that provides a quantitative relationship between point defect formation energies and growth process parameters is presented. It enables systematic point defect reduction by chemical potential control in metalorganic chemical vapor deposition (MOCVD) of III-nitrides. Experimental corroboration is provided by a case study of C incorporation in GaN. The theoretical model is shown to be successful in providing quantitative predictions of CN defect incorporation in GaN as a function of growth parameters and provides valuable insights into boundary phases and other impurity chemical reactions. The metal supersaturation is found to be the primary factor in determining the chemical potential of III/N and consequently incorporation or formation of point defects which involves exchange of III or N atoms with the reservoir. The framework is general and may be extended to other defect systems in (Al)GaN. The utility of equilibrium formalism typically employed in density functional theory in p...
Journal of Applied Physics | 2018
Shun Washiyama; Pramod Reddy; Felix Kaess; Ronny Kirste; Seiji Mita; Ramon Collazo; Zlatko Sitar
A thermodynamic supersaturation model for growth of AlGaN by metalorganic chemical vapor deposition was developed for experimentally accessible growth parameters. The derived non-linear relationships enabled us to estimate Ga and Al supersaturation during AlGaN growth for given growth conditions. Calculations revealed that the GaN phase was close to chemical equilibrium, while the Al supersaturation was as high as 1010 for typical growth conditions. Such a disparity in the supersaturation of reaction species plays a significant role in the stability of the growth of the resulting ternary alloy. The agreement between experiment and simulation suggests that the parasitic gas phase reactions between trimethylaluminum and NH3 were not significant at low NH3 flow rates/partial pressures, indicating that, under these conditions, the AlGaN growth was thermodynamically limited.A thermodynamic supersaturation model for growth of AlGaN by metalorganic chemical vapor deposition was developed for experimentally accessible growth parameters. The derived non-linear relationships enabled us to estimate Ga and Al supersaturation during AlGaN growth for given growth conditions. Calculations revealed that the GaN phase was close to chemical equilibrium, while the Al supersaturation was as high as 1010 for typical growth conditions. Such a disparity in the supersaturation of reaction species plays a significant role in the stability of the growth of the resulting ternary alloy. The agreement between experiment and simulation suggests that the parasitic gas phase reactions between trimethylaluminum and NH3 were not significant at low NH3 flow rates/partial pressures, indicating that, under these conditions, the AlGaN growth was thermodynamically limited.
Gallium Nitride Materials and Devices XIII | 2018
Ramon Collazo; Pramod Reddy; Shun Washiyama; Felix Kaess; Ronny Kirste; Seiji Mita; James Tweedie; Zlatko Sitar
Defect incorporation in AlGaN is dependent on the defect formation energy and hence on associated chemical potentials and the Fermi level. For example, the formation energy of CN in Al/GaN varies as chemical potential difference (µN- µC) and -EF (Fermi level). Here, we demonstrate a systematic point defect control by employing the defect formation energy as tool by (a) chemical potential control and (b) Fermi level control. Chemical potential control (µN and µC) with a case study of C in MOCVD GaN is reported. We derive a relationship between growth parameters, metal supersaturation (i.e. input and equilibrium partial pressures) and chemical potentials of III/N and impurity atoms demonstrating successful quantitative predictions of C incorporation as a function of growth conditions in GaN. Hence growth environment necessary for minimal C incorporation within any specified constraints may be determined and C is shown to be controlled from >1E19cm-3 to ~1E15 cm-3. Fermi level control based point defect reduction is demonstrated by modifying the Fermi level describing the probability of the defect level being occupied/unoccupied i.e. defect quasi Fermi level (DQFL). The DQFL is modified by introducing excess minority carriers (by above bandgap illumination). A predictable (and significant) reduction in compensating point defects (CN, H, VN) in (Si, Mg) doped AlGaN measured by electrical measurements, photoluminescence and secondary ion mass spectroscopy (SIMS) provides experimental corroboration. Further, experiments with varying steady state minority carrier densities at constant illumination prove the role of minority carriers and DQFL in defect reduction over other influences of illumination that are kept constant.
ECS Transactions | 2018
Biplab Sarkar; Shun Washiyama; M. Hayden Breckenridge; Andrew Klump; Jonathon N. Baker; Pramod Reddy; James Tweedie; Seiji Mita; Ronny Kirste; Doug Irving; Ramon Collazo; Zlatko Sitar