Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Silvia Boero is active.

Publication


Featured researches published by Silvia Boero.


Journal of Translational Medicine | 2013

The engagement of CTLA-4 on primary melanoma cell lines induces antibody-dependent cellular cytotoxicity and TNF-α production.

Stefania Laurent; Paola Queirolo; Silvia Boero; Sandra Salvi; Patrizia Piccioli; Simona Boccardo; Simona Minghelli; A. Morabito; Vincenzo Fontana; Gabriella Pietra; Paolo Carrega; Nicoletta Ferrari; Francesca Tosetti; Lung Ji Chang; Maria Cristina Mingari; Guido Ferlazzo; Alessandro Poggi; Maria Pia Pistillo

BackgroundCTLA-4 (Cytotoxic T lymphocyte antigen-4) is traditionally known as a negative regulator of T cell activation. The blocking of CTLA-4 using human monoclonal antibodies, such as Ipilimumab, is currently used to relieve CTLA-4-mediated inhibition of anti-tumor immune response in metastatic melanoma. Herein, we have analyzed CTLA-4 expression and Ipilimumab reactivity on melanoma cell lines and tumor tissues from cutaneous melanoma patients. Then, we investigated whether Ipilimumab can trigger innate immunity in terms of antibody dependent cellular cytotoxicity (ADCC) or Tumor Necrosis Factor (TNF)-α release. Finally, a xenograft murine model was set up to determine in vivo the effects of Ipilimumab and NK cells on melanoma.MethodsCTLA-4 expression and Ipilimumab reactivity were analyzed on 17 melanoma cell lines (14 primary and 3 long-term cell lines) by cytofluorimetry and on 33 melanoma tissues by immunohistochemistry. CTLA-4 transcripts were analyzed by quantitative RT-PCR. Soluble CTLA-4 and TNF-α were tested by ELISA. Peripheral blood mononuclear cells (PBMC), NK and γδT cells were tested in ADCC assay with Ipilimumab and melanoma cell lines. TNF-α release was analyzed in NK-melanoma cell co-cultures in the presence of ipilimumab. In vivo experiments of xenotransplantation were carried out in NOD/SCID mice. Results were analyzed using unpaired Student’s t-test.ResultsAll melanoma cell lines expressed mRNA and cytoplasmic CTLA-4 but surface reactivity with Ipilimumab was quite heterogeneous. Accordingly, about 2/3 of melanoma specimens expressed CTLA-4 at different level of intensity.Ipilimumab triggered, via FcγReceptorIIIA (CD16), ex vivo NK cells as well as PBMC, IL-2 activated NK and γδT cells to ADCC of CTLA-4+ melanoma cells. No ADCC was detected upon interaction with CTLA-4- FO-1 melanoma cell line. TNF-α was released upon interaction of NK cells with CTLA-4+ melanoma cell lines. Remarkably, Ipilimumab neither affected proliferation and viability nor triggered ADCC of CTLA-4+ T lymphocytes. In a chimeric murine xenograft model, the co-engraftment of Ipilimumab-treated melanoma cells with human allogeneic NK cells delayed and significantly reduced tumor growth, as compared to mice receiving control xenografts.ConclusionsOur studies demonstrate that Ipilimumab triggers effector lymphocytes to cytotoxicity and TNF-α release. These findings suggest that Ipilimumab, besides blocking CTLA-4, can directly activate the elimination of CTLA-4+ melanomas.


Blood | 2012

High ERp5/ADAM10 expression in lymph node microenvironment and impaired NKG2D ligands recognition in Hodgkin lymphomas

Maria Raffaella Zocchi; Silvia Catellani; Paolo Canevali; Sara Tavella; Anna Garuti; Barbara Villaggio; Annalisa Zunino; Marco Gobbi; Giulio Fraternali-Orcioni; Annalisa Kunkl; Jean Louis Ravetti; Silvia Boero; Alessandra Musso; Alessandro Poggi

Herein we describe that in classic Hodgkin lymphomas (cHL, n = 25) the lymph node (LN) stroma displayed in situ high levels of transcription and expression of the disulfide-isomerase ERp5 and of the disintegrin-metalloproteinase ADAM10, able to shed the ligands for NKG2D (NKG2D-L) from the cell membrane. These enzymes were detected both in LN mesenchymal stromal cells (MSCs) and in Reed-Sternberg (RS) cells; in addition, MIC-A and ULBP3 were present in culture supernatants of LN MSCs or RS cells. NKG2D-L-negative RS cells could not be killed by CD8(+)αβT or γδT cells; tumor cell killing was partially restored by treating RS cells with valproic acid, which enhanced NKG2D-L surface expression. Upon coculture with LN MSCs, CD8(+)αβT and γδT cells strongly reduced their cytolytic activity against NKG2D-L(+) targets; this seems to be the result of TGF-β, present at the tumor site, produced in vitro by LN MSCs and able to down-regulate the expression of NKG2D on T lymphocytes. In addition, CD8(+)αβT and γδT cells from the lymph nodes of cHL patients, cocultured in vitro with LN MSCs, underwent TGF-β-mediated down regulation of NKG2D. Thus, in cHL the tumor microenvironment is prone to inhibit the development of an efficient antitumor response.


Journal of Biological Chemistry | 2014

Nicotinamide phosphoribosyltransferase promotes epithelial-to-mesenchymal transition as a soluble factor independent of its enzymatic activity

Debora Soncini; Irene Caffa; Gabriele Zoppoli; Michele Cea; Antonia Cagnetta; Mario Passalacqua; Luca Mastracci; Silvia Boero; Fabrizio Montecucco; Giovanna Sociali; Denise Lasigliè; Patrizia Damonte; Alessia Grozio; Elena Mannino; Alessandro Poggi; Vito Giuseppe D'Agostino; Fiammetta Monacelli; Alessandro Provenzani; Patrizio Odetti; Alberto Ballestrero; Santina Bruzzone; Alessio Nencioni

Background: Nicotinamide phosphoribosyltransferase (NAMPT) acts both as an enzyme in the production of the coenzyme NAD+ and as a secreted cytokine. Results: In breast cancer cells, NAMPT induces the epithelial-to-mesenchymal transition, a process that underlies metastasis, as a secreted protein independent of its enzymatic activity. Conclusion: Secreted NAMPT promotes epithelial-to-mesenchymal transition. Significance: Extracellular NAMPT neutralization may be of therapeutic value. Boosting NAD+ biosynthesis with NAD+ intermediates has been proposed as a strategy for preventing and treating age-associated diseases, including cancer. However, concerns in this area were raised by observations that nicotinamide phosphoribosyltransferase (NAMPT), a key enzyme in mammalian NAD+ biosynthesis, is frequently up-regulated in human malignancies, including breast cancer, suggesting possible protumorigenic effects for this protein. We addressed this issue by studying NAMPT expression and function in human breast cancer in vivo and in vitro. Our data indicate that high NAMPT levels are associated with aggressive pathological and molecular features, such as estrogen receptor negativity as well as HER2-enriched and basal-like PAM50 phenotypes. Consistent with these findings, we found that NAMPT overexpression in mammary epithelial cells induced epithelial-to-mesenchymal transition, a morphological and functional switch that confers cancer cells an increased metastatic potential. However, importantly, NAMPT-induced epithelial-to-mesenchymal transition was found to be independent of NAMPT enzymatic activity and of the NAMPT product nicotinamide mononucleotide. Instead, it was mediated by secreted NAMPT through its ability to activate the TGFβ signaling pathway via increased TGFβ1 production. These findings have implications for the design of therapeutic strategies exploiting NAD+ biosynthesis via NAMPT in aging and cancer and also suggest the potential of anticancer agents designed to specifically neutralize extracellular NAMPT. Notably, because high levels of circulating NAMPT are found in obese and diabetic patients, our data could also explain the increased predisposition to cancer of these subjects.


European Journal of Medicinal Chemistry | 2015

Quinazolinedione SIRT6 inhibitors sensitize cancer cells to chemotherapeutics

Giovanna Sociali; Lauretta Galeno; Marco Daniele Parenti; Alessia Grozio; Inga Bauer; Mario Passalacqua; Silvia Boero; Alessandra Donadini; Enrico Millo; Marta Bellotti; Laura Sturla; Patrizia Damonte; Alessandra Puddu; Claudia Ferroni; Greta Varchi; Claudio Franceschi; Alberto Ballestrero; Alessandro Poggi; Santina Bruzzone; Alessio Nencioni; Alberto Del Rio

The NAD(+)-dependent sirtuin SIRT6 is highly expressed in human breast, prostate, and skin cancer where it mediates resistance to cytotoxic agents and prevents differentiation. Thus, SIRT6 is an attractive target for the development of new anticancer agents to be used alone or in combination with chemo- or radiotherapy. Here we report on the identification of novel quinazolinedione compounds with inhibitory activity on SIRT6. As predicted based on SIRT6s biological functions, the identified new SIRT6 inhibitors increase histone H3 lysine 9 acetylation, reduce TNF-α production and increase glucose uptake in cultured cells. In addition, these compounds exacerbate DNA damage and cell death in response to the PARP inhibitor olaparib in BRCA2-deficient Capan-1 cells and cooperate with gemcitabine to the killing of pancreatic cancer cells. In conclusion, new SIRT6 inhibitors with a quinazolinedione-based structure have been identified which are active in cells and could potentially find applications in cancer treatment.


European Journal of Medicinal Chemistry | 2016

Discovery of a new selective inhibitor of A Disintegrin And Metalloprotease 10 (ADAM-10) able to reduce the shedding of NKG2D ligands in Hodgkin's lymphoma cell models

Caterina Camodeca; Elisa Nuti; Livia Tepshi; Silvia Boero; Tiziano Tuccinardi; Enrico A. Stura; Alessandro Poggi; Maria Raffaella Zocchi; Armando Rossello

Hodgkins lymphoma (HL) is the most common malignant lymphoma in young adults in the western world. This disease is characterized by an overexpression of ADAM-10 with increased release of NKG2D ligands, involved in an impaired immune response against tumor cells. We designed and synthesized two new ADAM-10 selective inhibitors, 2 and 3 based on previously published ADAM-17 selective inhibitor 1. The most promising compound was the thiazolidine derivative 3, with nanomolar activity for ADAM-10, high selectivity over ADAM-17 and MMPs and good efficacy in reducing the shedding of NKG2D ligands (MIC-B and ULBP3) in three different HL cell lines at non-toxic doses. Molecular modeling studies were used to drive the design and X-ray crystallography studies were carried out to explain the selectivity of 3 for ADAM-10 over MMPs.


Haematologica | 2014

Aminobisphosphonates prevent the inhibitory effects exerted by lymph node stromal cells on anti-tumor Vδ 2 T lymphocytes in non-Hodgkin lymphomas

Alessandra Musso; Silvia Catellani; Paolo Canevali; Sara Tavella; Roberta Venè; Silvia Boero; Ivana Pierri; Marco Gobbi; Annalisa Kunkl; Jean Louis Ravetti; Maria Raffaella Zocchi; Alessandro Poggi

In this study, we analyzed the influence of mesenchymal stromal cells derived from lymph nodes of non-Hodgkin’s lymphomas, on effector functions and differentiation of Vdelta (δ)2 T lymphocytes. We show that: i) lymph-node mesenchymal stromal cells of non-Hodgkin’s lymphoma inhibit NKG2D-mediated lymphoid cell killing, but not rituximab-induced antibody-dependent cell-mediated cytotoxicity, exerted by Vδ2 T lymphocytes; ii) pre-treatment of mesenchymal stromal cells with the aminobisphosphonates pamidronate or zoledronate can rescue lymphoma cell killing via NKG2D; iii) this is due to inhibition of transforming growth factor-β and increase in interleukin-15 production by mesenchymal stromal cells; iv) aminobisphosphonate-treated mesenchymal stromal cells drive Vδ2 T-lymphocyte differentiation into effector memory T cells, expressing the Thelper1 cytokines tumor necrosis factor-α and interferon-γ. In non-Hodgkin’s lymphoma lymph nodes, Vδ2 T cells were mostly naïve; upon co-culture with autologous lymph-node mesenchymal stromal cells exposed to zoledronate, the percentage of terminal differentiated effector memory Vδ2 T lymphocytes increased. In all non-Hodgkin’s lymphomas, low or undetectable transcription of Thelper1 cytokines was found. In diffused large B-cell lymphomas and in a group of follicular lymphoma, transcription of transforming growth factor β and interleukin-10 was enhanced compared to non-neoplastic lymph nodes. Thus, in non-Hodgkin lymphomas mesenchymal stromal cells interfere with Vδ2 T-lymphocyte cytolytic function and differentiation to Thelper1 and/or effector memory cells, depending on the prominent in situ cytokine milieu. Aminobisphosphonates, acting on lymph-node mesenchymal stromal cells, can push the balance towards Thelper1/effector memory and rescue the recognition and killing of lymphoma cells through NKG2D, sparing rituximab-induced antibody-dependent cell-mediated cytotoxicity.


PLOS ONE | 2013

Selective Role of Mevalonate Pathway in Regulating Perforin but Not FasL and TNFalpha Release in Human Natural Killer Cells

Alessandro Poggi; Silvia Boero; Alessandra Musso; Maria Raffaella Zocchi

We have analyzed the effects of fluvastatin, an inhibitor of the enzyme 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase involved in mevalonate synthesis, on human NK cell-mediated anti-tumor cytolysis. Fluvastatin inhibited the activation of the small guanosin triphosphate binding protein (GTP) RhoA and the consequent actin redistribution induced by ligation of LFA1 involved in NK-tumor target cell adhesion. Also, fluvastatin reduced ganglioside M1 rafts formation triggered through the engagement of NK cell activating receptors as FcγRIIIA (CD16), NKG2D and DNAM1. Cytolysis of tumor targets was inhibited up to 90% when NK cells were cultured with fluvastatin by affecting i) receptor-mediated increase of the intracellular free calcium concentration, ii) activation of akt1/PKB and iii) perforin and granzyme release. Fluvastatin displayed a stronger inhibiting effect on NKG2D, DNAM1, 2B4, NKp30, NKp44 and NKp46 than on CD16-mediated NK cell triggering. This was in line with the impairment of surface expression of all these receptors but not of CD16. Remarkably, fluvastatin did not affect the expression of the inhibiting receptors CD94, KIR2D and LAIR1. FasL release elicited by either NK-tumor cell interaction or CD16 or NKG2D engagement, as well as FasL-mediated killing, were not sensitive to fluvastatin. Moreover, TNFα secretion triggered in NK cells upon incubation with tumor target cells or engagement of NKG2D receptor was not impaired in fluvastatin-treated NK cells. Likewise, antibody dependent cellular cytotoxicity (ADCC) triggered through FcγRIIIA engagement with the humanized monoclonal antibody rituximab or trastuzumab was only marginally affected in fluvastatin-treated NK cells. Altogether these findings suggest that interference with mevalonate synthesis impairs activation and assembly of cytoskeleton, degranulation and cytotoxic effect of perforins and granzyme but not FasL- and TNFα-mediated cytotoxicity.


International Journal of Cancer | 2011

Differential survival of γδT cells, αβT cells and NK cells upon engagement of NKG2D by NKG2DL-expressing leukemic cells

Alessandro Poggi; Marta Zancolli; Silvia Boero; Silvia Catellani; Alessandra Musso; Maria Raffaella Zocchi

Herein, we show that γδT, CD8+αβT lymphocytes and natural killer (NK) cells display a different sensitivity to survival signals delivered via NKG2D surface receptor. All the three effector cell populations activate Akt1/PKBalpha through the engagement of this molecule. Upon binding to leukemic cells expressing NKG2D ligands (NKG2DL), including chronic lymphocytic leukemias treated with transretinoic acid, most γδT (>60%) and half CD8+αβT cells (about 50%) received a survival signal, at variance with the majority of NK cells (>80%) that underwent apoptosis by day 5. Interestingly, oligomerization of NKG2D in γδT or CD8+αβT cells, led to a significant rise in nuclear/cytoplasmic ratio of both NF‐kBp52 and RelB, the two NF‐kB subunits mainly involved in the transcription of antiapoptotic proteins of the Bcl family. Indeed, the ratio between the antiapoptotic protein Bcl‐2 or Bcl‐xL and the proapoptotic protein Bax raised in γδT or CD8+αβT cells following NKG2D engagement by specific monoclonal antibodies or by NKG2DL expressing leukemic cells. Conversely, nuclear translocation of NF‐kBp52 or RelB did not increase, nor the Bcl‐2/Bax or the Bcl‐xL/Bax ratios changed significantly, in NK cells upon oligomerizaton of NKG2D. Of note, transcripts for α5 importin, responsible for nuclear translocation of NF‐kBp52/Rel B heterodimer, are significantly higher in γδT and CD8+αβT cells than in NK cells. These biochemical data may explain, at least in part, why γδT and CD8+αβT cells are cytolytic effector cells more resistant to target‐induced apoptosis than NK cells.


Bioorganic & Medicinal Chemistry | 2017

SIRT6 inhibitors with salicylate-like structure show immunosuppressive and chemosensitizing effects

Patrizia Damonte; Giovanna Sociali; Marco Daniele Parenti; Debora Soncini; Inga Bauer; Silvia Boero; Alessia Grozio; Maria von Holtey; Francesco Piacente; Pamela Becherini; Annalisa Salis; Gianluca Damonte; Michele Cea; Maximilien Murone; Alessandro Poggi; Alessio Nencioni; Alberto Del Rio; Santina Bruzzone

The NAD+-dependent deacetylase SIRT6 is an emerging cancer drug target, whose inhibition sensitizes cancer cells to chemo-radiotherapy and has pro-differentiating effects. Here we report on the identification of novel SIRT6 inhibitors with a salicylate-based structure. The new SIRT6 inhibitors show improved potency and specificity compared to the hit inhibitor identified in an in silico compound screen. As predicted based on SIRT6 biological roles, the new leads increase histone 3 lysine 9 acetylation and glucose uptake in cultured cells, while blocking TNF-α production and T lymphocyte proliferation. Notably, the new SIRT6 inhibitors effectively sensitize pancreatic cancer cells to gemcitabine. Finally, studies of compound fingerprinting and pharmacokinetics defined the drug-like properties of one of the new SIRT6 inhibitors, potentially allowing for subsequent in vivo proof-of-concept studies. In conclusion, new SIRT6 inhibitors with a salicylate-like structure were identified, which are active in cells and could potentially find applications in disease conditions, including cancer and immune-mediated disorders.


Journal of Translational Medicine | 2016

Erratum to: Analysis of in vitro ADCC and clinical response to trastuzumab: Possible relevance of FcγRIIIA/FcγRIIA gene polymorphisms and HER-2 expression levels on breast cancer cell lines [J Transl Med (2015) 13:324] DOI: 10.1186/s12967-015-0680-0

Silvia Boero; Anna Morabito; Barbara Banelli; Barbara Cardinali; Beatrice Dozin; Gianluigi Lunardi; Patrizia Piccioli; Sonia Lastraioli; Roberta Carosio; Sandra Salvi; A. Levaggi; Francesca Poggio; A. D'Alonzo; Massimo Romani; Lucia Del Mastro; Alessandro Poggi; Maria Pia Pistillo

© 2016 Boero et al. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/ publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. Erratum to: J Transl Med (2015) 13:324 DOI 10.1186/s12967‐015‐0680‐0 It has come the publisher’s attention that the original version of this article [1] unfortunately contained an error. In Table 3, first column, the FcγRIIA 131 H>R genotypes were incorrectly labelled. In particular, V/V should have read H/H, V/F should have read H/R and F/F should have read R/R. Please note that this correction does not change the genotype numerical values of FcγRIIA polymorphism. The correct Table 3 has been published as Table 1 in this Erratum. Open Access Journal of Translational Medicine

Collaboration


Dive into the Silvia Boero's collaboration.

Top Co-Authors

Avatar

Alessandro Poggi

National Cancer Research Institute

View shared research outputs
Top Co-Authors

Avatar

Maria Raffaella Zocchi

Vita-Salute San Raffaele University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alessandra Musso

Vita-Salute San Raffaele University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge