Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Simon Greenaway is active.

Publication


Featured researches published by Simon Greenaway.


Nature Genetics | 2000

A systematic, genome-wide, phenotype-driven mutagenesis programme for gene function studies in the mouse.

Patrick M. Nolan; Jo Peters; Mark Strivens; Derek Rogers; Jim J. Hagan; Nigel K. Spurr; Ian C. Gray; Lucie Vizor; Debra Brooker; Elaine Whitehill; Rebecca Washbourne; Tertius Hough; Simon Greenaway; Mazda Hewitt; Xinhong Liu; Stefan L. McCormack; Karen Pickford; Rachael Selley; Christine A. Wells; Zuzanna Tymowska-Lalanne; Phil Roby; Peter H. Glenister; Claire E. Thornton; Caroline Thaung; Julie-Anne Stevenson; Ruth M. Arkell; Philomena Mburu; Rachel E. Hardisty; Amy E. Kiernan; Alexandra Erven

As the human genome project approaches completion, the challenge for mammalian geneticists is to develop approaches for the systematic determination of mammalian gene function. Mouse mutagenesis will be a key element of studies of gene function. Phenotype-driven approaches using the chemical mutagen ethylnitrosourea (ENU) represent a potentially efficient route for the generation of large numbers of mutant mice that can be screened for novel phenotypes. The advantage of this approach is that, in assessing gene function, no a priori assumptions are made about the genes involved in any pathway. Phenotype-driven mutagenesis is thus an effective method for the identification of novel genes and pathways. We have undertaken a genome-wide, phenotype-driven screen for dominant mutations in the mouse. We generated and screened over 26,000 mice, and recovered some 500 new mouse mutants. Our work, along with the programme reported in the accompanying paper, has led to a substantial increase in the mouse mutant resource and represents a first step towards systematic studies of gene function in mammalian genetics.


Genome Biology | 2013

A comparative phenotypic and genomic analysis of C57BL/6J and C57BL/6N mouse strains

Michelle Simon; Simon Greenaway; Jacqueline K. White; Helmut Fuchs; Valérie Gailus-Durner; Sara Wells; Tania Sorg; Kim Wong; Elodie Bedu; Elizabeth J. Cartwright; Romain Dacquin; Sophia Djebali; Jeanne Estabel; Jochen Graw; Neil Ingham; Ian J. Jackson; Andreas Lengeling; Silvia Mandillo; Jacqueline Marvel; Hamid Meziane; Frédéric Preitner; Oliver Puk; Michel J. Roux; David J. Adams; Sarah Atkins; Abdel Ayadi; Lore Becker; Andrew Blake; Debra Brooker; Heather Cater

BackgroundThe mouse inbred line C57BL/6J is widely used in mouse genetics and its genome has been incorporated into many genetic reference populations. More recently large initiatives such as the International Knockout Mouse Consortium (IKMC) are using the C57BL/6N mouse strain to generate null alleles for all mouse genes. Hence both strains are now widely used in mouse genetics studies. Here we perform a comprehensive genomic and phenotypic analysis of the two strains to identify differences that may influence their underlying genetic mechanisms.ResultsWe undertake genome sequence comparisons of C57BL/6J and C57BL/6N to identify SNPs, indels and structural variants, with a focus on identifying all coding variants. We annotate 34 SNPs and 2 indels that distinguish C57BL/6J and C57BL/6N coding sequences, as well as 15 structural variants that overlap a gene. In parallel we assess the comparative phenotypes of the two inbred lines utilizing the EMPReSSslim phenotyping pipeline, a broad based assessment encompassing diverse biological systems. We perform additional secondary phenotyping assessments to explore other phenotype domains and to elaborate phenotype differences identified in the primary assessment. We uncover significant phenotypic differences between the two lines, replicated across multiple centers, in a number of physiological, biochemical and behavioral systems.ConclusionsComparison of C57BL/6J and C57BL/6N demonstrates a range of phenotypic differences that have the potential to impact upon penetrance and expressivity of mutational effects in these strains. Moreover, the sequence variants we identify provide a set of candidate genes for the phenotypic differences observed between the two strains.


Nature Genetics | 2001

A radiation hybrid map of mouse genes.

Thomas J. Hudson; Deanna M. Church; Simon Greenaway; Huy L. Nguyen; April Cook; Robert G. Steen; William J. Van Etten; Andrew B. Castle; Mark Strivens; Pamela Trickett; Christine Heuston; Claire Davison; Anne Southwell; Rachel E. Hardisty; Anabel Varela-Carver; Andrew R. Haynes; Patricia Rodriguez-Tome; Hirofumi Doi; Minoru S.H. Ko; Joan Pontius; Lynn M. Schriml; Lukas Wagner; Donna Maglott; Steve D.M. Brown; Eric S. Lander; Greg Schuler; Paul Denny

A comprehensive gene-based map of a genome is a powerful tool for genetic studies and is especially useful for the positional cloning and positional candidate approaches. The availability of gene maps for multiple organisms provides the foundation for detailed conserved-orthology maps showing the correspondence between conserved genomic segments. These maps make it possible to use cross-species information in gene hunts and shed light on the evolutionary forces that shape the genome. Here we report a radiation hybrid map of mouse genes, a combined project of the Whitehead Institute/Massachusetts Institute of Technology Center for Genome Research, the Medical Research Council UK Mouse Genome Centre, and the National Center for Biotechnology Information. The map contains 11,109 genes, screened against the T31 RH panel and positioned relative to a reference map containing 2,280 mouse genetic markers. It includes 3,658 genes homologous to the human genome sequence and provides a framework for overlaying the human genome sequence to the mouse and for sequencing the mouse genome.


Mammalian Genome | 2007

Mouse Phenotype Database Integration Consortium: integration [corrected] of mouse phenome data resources.

John M. Hancock; Niels C. Adams; Vassilis Aidinis; Andrew Blake; Molly Bogue; Steve D.M. Brown; Elissa J. Chesler; Duncan Davidson; Christopher Duran; Janan T. Eppig; Valérie Gailus-Durner; Hilary Gates; Georgios V. Gkoutos; Simon Greenaway; Martin Hrabé de Angelis; George Kollias; Sophie Leblanc; Kirsty Lee; Christoph Lengger; Holger Maier; Ann-Marie Mallon; Hiroshi Masuya; David Melvin; Werner Müller; Helen Parkinson; Glenn Proctor; Eli Reuveni; Paul N. Schofield; Aadya Shukla; Cynthia L. Smith

Understanding the functions encoded in the mouse genome will be central to an understanding of the genetic basis of human disease. To achieve this it will be essential to be able to characterize the phenotypic consequences of variation and alterations in individual genes. Data on the phenotypes of mouse strains are currently held in a number of different forms (detailed descriptions of mouse lines, first-line phenotyping data on novel mutations, data on the normal features of inbred lines) at many sites worldwide. For the most efficient use of these data sets, we have initiated a process to develop standards for the description of phenotypes (using ontologies) and file formats for the description of phenotyping protocols and phenotype data sets. This process is ongoing and needs to be supported by the wider mouse genetics and phenotyping communities to succeed. We invite interested parties to contact us as we develop this process further.


Nature Genetics | 2017

Disease model discovery from 3,328 gene knockouts by The International Mouse Phenotyping Consortium.

Terrence F. Meehan; Nathalie Conte; David B. West; Julius Jacobsen; Jeremy Mason; Jonathan Warren; Chao Kung Chen; Ilinca Tudose; Mike Relac; Peter Matthews; Natasha A. Karp; Luis Santos; Tanja Fiegel; Natalie Ring; Henrik Westerberg; Simon Greenaway; Duncan Sneddon; Hugh Morgan; Gemma F. Codner; Michelle Stewart; James Brown; Neil R. Horner; Melissa Haendel; Nicole L. Washington; Christopher J. Mungall; Corey Reynolds; Juan Gallegos; Valerie Gailus-Durner; Tania Sorg; Guillaume Pavlovic

Although next-generation sequencing has revolutionized the ability to associate variants with human diseases, diagnostic rates and development of new therapies are still limited by a lack of knowledge of the functions and pathobiological mechanisms of most genes. To address this challenge, the International Mouse Phenotyping Consortium is creating a genome- and phenome-wide catalog of gene function by characterizing new knockout-mouse strains across diverse biological systems through a broad set of standardized phenotyping tests. All mice will be readily available to the biomedical community. Analyzing the first 3,328 genes identified models for 360 diseases, including the first models, to our knowledge, for type C Bernard–Soulier, Bardet–Biedl-5 and Gordon Holmes syndromes. 90% of our phenotype annotations were novel, providing functional evidence for 1,092 genes and candidates in genetically uncharacterized diseases including arrhythmogenic right ventricular dysplasia 3. Finally, we describe our role in variant functional validation with The 100,000 Genomes Project and others.


Nature Communications | 2017

Prevalence of sexual dimorphism in mammalian phenotypic traits

Natasha A. Karp; Jeremy Mason; Arthur L. Beaudet; Yoav Benjamini; Lynette Bower; Robert E. Braun; Steve D.M. Brown; Elissa J. Chesler; Mary E. Dickinson; Ann M. Flenniken; Helmut Fuchs; Martin Hrabé de Angelis; Xiang Gao; Shiying Guo; Simon Greenaway; Ruth Heller; Yann Herault; Monica J. Justice; Natalja Kurbatova; Christopher J. Lelliott; K. C. Kent Lloyd; Ann-Marie Mallon; Judith E. Mank; Hiroshi Masuya; Colin McKerlie; Terrence F. Meehan; Richard F. Mott; Stephen A. Murray; Helen E. Parkinson; Ramiro Ramirez-Solis

The role of sex in biomedical studies has often been overlooked, despite evidence of sexually dimorphic effects in some biological studies. Here, we used high-throughput phenotype data from 14,250 wildtype and 40,192 mutant mice (representing 2,186 knockout lines), analysed for up to 234 traits, and found a large proportion of mammalian traits both in wildtype and mutants are influenced by sex. This result has implications for interpreting disease phenotypes in animal models and humans.


Comparative and Functional Genomics | 2004

Ontologies for the description of mouse phenotypes

G. V. Gkoutos; E. C. J. Green; Ann-Marie Mallon; Andrew Blake; Simon Greenaway; John M. Hancock; Duncan Davidson

Ontologies are becoming increasingly important for the efficient storage, retrieval and mining of biological data. The description of phenotypes using ontologies is a particularly complex problem. We outline a schema that can be used to describe phenotypes by combining orthologous axiomatic ontologies. We also describe tools for storing, browsing and searching such complex ontologies. Central to this approach is that assays (protocols for measuring phenotypic characters) describe what has been measured as well as how this was done, allowing assays to link individual organisms to ontologies describing phenotypes. We have evaluated this approach by automatically annotating data on 600 000 mutant mice phenotypes using the SHIRPA protocol. We believe this approach will enable the flexible, extensible and detailed description of phenotypes from any organism.


Database | 2010

Finding and sharing: new approaches to registries of databases and services for the biomedical sciences

Damian Smedley; Paul N. Schofield; Chao-Kung Chen; Vassilis Aidinis; Crysanthi Ainali; Jonathan Bard; Rudi Balling; Ewan Birney; Andrew Blake; Erik Bongcam-Rudloff; Anthony J. Brookes; Gianni Cesareni; Christina Chandras; Janan T. Eppig; Paul Flicek; Georgios V. Gkoutos; Simon Greenaway; Michael Gruenberger; Jean-Karim Hériché; Andrew Lyall; Ann-Marie Mallon; Dawn Muddyman; Florian Reisinger; Martin Ringwald; Nadia Rosenthal; Klaus Schughart; Morris A. Swertz; Gudmundur A. Thorisson; Michael Zouberakis; John M. Hancock

The recent explosion of biological data and the concomitant proliferation of distributed databases make it challenging for biologists and bioinformaticians to discover the best data resources for their needs, and the most efficient way to access and use them. Despite a rapid acceleration in uptake of syntactic and semantic standards for interoperability, it is still difficult for users to find which databases support the standards and interfaces that they need. To solve these problems, several groups are developing registries of databases that capture key metadata describing the biological scope, utility, accessibility, ease-of-use and existence of web services allowing interoperability between resources. Here, we describe some of these initiatives including a novel formalism, the Database Description Framework, for describing database operations and functionality and encouraging good database practise. We expect such approaches will result in improved discovery, uptake and utilization of data resources. Database URL: http://www.casimir.org.uk/casimir_ddf


Mammalian Genome | 2008

Integration of Mouse Phenome Data Resources

John M. Hancock; Niels C. Adams; Vassilis Aidinis; Andrew Blake; Judith A. Blake; Molly Bogue; Steve D.M. Brown; Elissa J. Chesler; Duncan Davidson; Christopher Duran; Janan T. Eppig; Valérie Gailus-Durner; Hilary Gates; Georgios V. Gkoutos; Simon Greenaway; Martin Hrabé de Angelis; George Kollias; Sophie Leblanc; Kirsty Lee; Christoph Lengger; Holger Maier; Ann-Marie Mallon; Hiroshi Masuya; David Melvin; Werner Müller; Helen Parkinson; Glenn Proctor; Eli Reuveni; Paul N. Schofield; Aadya Shukla

Understanding the functions encoded in the mouse genome will be central to an understanding of the genetic basis of human disease. To achieve this it will be essential to be able to characterise the phenotypic consequences of variation and alterations in individual genes. Data on the phenotypes of mouse strains are currently held in a number of different forms (detailed descriptions of mouse lines, first line phenotyping data on novel mutations, data on the normal features of inbred lines, etc.) at many sites worldwide. For the most efficient use of these data sets, we have set in train a process to develop standards for the description of phenotypes (using ontologies), and file formats for the description of phenotyping protocols and phenotype data sets. This process is ongoing, and needs to be supported by the wider mouse genetics and phenotyping communities to succeed. We invite interested parties to contact us as we develop this process further.


Human Molecular Genetics | 2015

The severity of retinal pathology in homozygous Crb1rd8/rd8 mice is dependent on additional genetic factors

Ulrich F.O. Luhmann; Livia S. Carvalho; Sophia-Martha kleine Holthaus; Jill A. Cowing; Simon Greenaway; Colin Chu; Philipp Herrmann; Alexander J. Smith; Peter M.G. Munro; Paul K. Potter; James W. Bainbridge; Robin R. Ali

Understanding phenotype–genotype correlations in retinal degeneration is a major challenge. Mutations in CRB1 lead to a spectrum of autosomal recessive retinal dystrophies with variable phenotypes suggesting the influence of modifying factors. To establish the contribution of the genetic background to phenotypic variability associated with the Crb1rd8/rd8 mutation, we compared the retinal pathology of Crb1rd8/rd8/J inbred mice with that of two Crb1rd8/rd8 lines backcrossed with C57BL/6JOlaHsd mice. Topical endoscopic fundal imaging and scanning laser ophthalmoscopy fundus images of all three Crb1rd8/rd8 lines showed a significant increase in the number of inferior retinal lesions that was strikingly variable between the lines. Optical coherence tomography, semithin, ultrastructural morphology and assessment of inflammatory and vascular marker by immunohistochemistry and quantitative reverse transcriptase-polymerase chain reaction revealed that the lesions were associated with photoreceptor death, Müller and microglia activation and telangiectasia-like vascular remodelling—features that were stable in the inbred, variable in the second, but virtually absent in the third Crb1rd8/rd8 line, even at 12 months of age. This suggests that the Crb1rd8/rd8 mutation is necessary, but not sufficient for the development of these degenerative features. By whole-genome SNP analysis of the genotype–phenotype correlation, a candidate region on chromosome 15 was identified. This may carry one or more genetic modifiers for the manifestation of the retinal pathology associated with mutations in Crb1. This study also provides insight into the nature of the retinal vascular lesions that likely represent a clinical correlate for the formation of retinal telangiectasia or Coats-like vasculopathy in patients with CRB1 mutations that are thought to depend on such genetic modifiers.

Collaboration


Dive into the Simon Greenaway's collaboration.

Top Co-Authors

Avatar

Andrew Blake

Medical Research Council

View shared research outputs
Top Co-Authors

Avatar

Ann-Marie Mallon

Wellcome Trust Sanger Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Christoph Lengger

Wellcome Trust Sanger Institute

View shared research outputs
Top Co-Authors

Avatar

David Melvin

Wellcome Trust Sanger Institute

View shared research outputs
Top Co-Authors

Avatar

E. C. J. Green

Medical Research Council

View shared research outputs
Top Co-Authors

Avatar

Michelle Simon

Medical Research Council

View shared research outputs
Researchain Logo
Decentralizing Knowledge