Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Songtao Jia is active.

Publication


Featured researches published by Songtao Jia.


Nature Genetics | 2004

RITS acts in cis to promote RNA interference–mediated transcriptional and post-transcriptional silencing

Ken-ichi Noma; Tomoyasu Sugiyama; Hugh P. Cam; André Verdel; Martin Zofall; Songtao Jia; Danesh Moazed; Shiv I. S. Grewal

RNA interference is a conserved mechanism by which double-stranded RNA is processed into short interfering RNAs (siRNAs) that can trigger both post-transcriptional and transcriptional gene silencing. In fission yeast, the RNA-induced initiation of transcriptional gene silencing (RITS) complex contains Dicer-generated siRNAs and is required for heterochromatic silencing. Here we show that RITS components, including Argonaute protein, bind to all known heterochromatic loci. At the mating-type region, RITS is recruited to the centromere-homologous repeat cenH in a Dicer-dependent manner, whereas the spreading of RITS across the entire 20-kb silenced domain, as well as its subsequent maintenance, requires heterochromatin machinery including Swi6 and occurs even in the absence of Dicer. Furthermore, our analyses suggest that RNA interference machinery operates in cis as a stable component of heterochromatic domains with RITS tethered to silenced loci by methylation of histone H3 at Lys9. This tethering promotes the processing of transcripts and generation of additional siRNAs for heterochromatin maintenance.


Nature Cell Biology | 2005

Ubiquitin ligase component Cul4 associates with Clr4 histone methyltransferase to assemble heterochromatin

Songtao Jia; Ryuji Kobayashi; Shiv I. S. Grewal

In eukaryotes, heterochromatin mediates diverse processes including gene silencing and regulation of long-range chromatin interactions. The formation of heterochromatin involves a conserved array of histone modifications; in particular, methylation of histone H3 at Lys 9 (H3K9me) is essential for recruiting HP1/Swi6 proteins. In fission yeast, the Clr4 methyltransferase is responsible for H3K9me across all heterochromatic domains. However, the mechanism of Clr4 recruitment to these loci is poorly understood. We show that Clr4 associates with Cul4, a cullin family protein that serves as a scaffold for assembling ubiquitin ligases. Mutations in Cul4 result in defective localization of Clr4 and loss of silencing at heterochromatic loci. This is accompanied by a severe reduction in H3K9me and Swi6 levels, and accumulation of transcripts corresponding to naturally silenced repeat elements within heterochromatic domains. Moreover, heterochromatin defects in Cul4 mutants could not be rescued by expression of Cul4 protein lacking Nedd8 modification, which is essential for its ubiquitin ligase activity. Rik1, a protein related to DNA damage binding protein DDB1 and required for H3K9me, also interacts with Cul4, the association of which might serve to target Clr4 to heterochromatic loci. These analyses uncover a role for Cul4-based protein ubiquitination in regulating H3K9me and heterochromatin formation.


Nature Genetics | 2005

EGFR signaling attenuates Groucho-dependent repression to antagonize Notch transcriptional output

Peleg Hasson; Nirit Egoz; Clint Winkler; Gloria Volohonsky; Songtao Jia; Tama Dinur; Talila Volk; Albert J. Courey; Ze’ev Paroush

Crosstalk between signaling pathways is crucial for the generation of complex and varied transcriptional networks. Antagonism between the EGF-receptor (EGFR) and Notch pathways in particular is well documented, although the underlying mechanism is poorly understood. The global corepressor Groucho (Gro) and its transducin-like Enhancer-of-split (TLE) mammalian homologs mediate repression by a myriad of repressors, including effectors of the Notch, Wnt (Wg) and TGF-β (Dpp) signaling cascades. Given that there are genetic interactions between gro and components of the EGFR pathway (ref. 9 and P.H. et al., unpublished results), we tested whether Gro is at a crossroad between this and other pathways. Here we show that phosphorylation of Gro in response to MAPK activation weakens its repressor capacity, attenuating Gro-dependent transcriptional silencing by the Enhancer-of-split proteins, effectors of the Notch cascade. Thus, Gro is a new junction between signaling pathways, enabling EGFR signaling to antagonize transcriptional output by Notch and potentially other Gro-dependent pathways.


Molecular Cell | 2009

Regulation of Set9-Mediated H4K20 Methylation by a PWWP Domain Protein

Yu Wang; Bharat Reddy; James Thompson; Hengbin Wang; Ken-ichi Noma; John R. Yates; Songtao Jia

Methylation of histone H4 lysine 20 (H4K20me) is essential for recruiting checkpoint proteins 53BP1/Crb2 to DNA lesions and subsequent activation of a DNA-damage checkpoint. In fission yeast, Set9 (spKMT5) catalyzes mono-, di-, and trimethylation of H4K20. However, the mechanisms that regulate Set9 function are poorly understood. Here, we identified a PWWP domain protein Pdp1 as a Set9-associated factor. Pdp1 binds to histones and is required for Set9 chromatin localization. Yeast cells without Pdp1 were deficient in all three states of H4K20me, sensitive to genotoxic treatments, and impaired in Crb2 recruitment. The PWWP domain of Pdp1 binds to H4K20me, and mutations within the PWWP domain that abrogated this interaction in vitro reduced both the association of Set9 with chromatin and the extent of H4K20me in vivo. These results demonstrate that the PWWP domain is a new methyl-lysine recognition motif that plays important roles in epigenetic regulation.


Cell | 2004

Heterochromatin Regulates Cell Type-Specific Long-Range Chromatin Interactions Essential for Directed Recombination

Songtao Jia; Takatomi Yamada; Shiv I. S. Grewal

Mating-type switching in Schizosaccharomyces pombe involves replacing genetic information at the expressed mat1 locus with sequences copied from one of two silent donor loci, mat2-P or mat3-M, located within a 20-kb heterochromatic domain. Donor selection is dictated by cell type: mat2 is the preferred donor in M cells, and mat3 is the preferred donor in P cells. Here we show that a recombination-promoting complex (RPC) containing Swi2 and Swi5 proteins exhibits cell type-specific localization pattern at the silent mating-type region and this differential localization modulates donor preference during mating-type switching. In P cells, RPC localization is restricted to a recombination enhancer located adjacent to mat3, but in M cells, RPC spreads in cis across the entire silent mating-type interval in a heterochromatin-dependent manner. Our analyses implicate heterochromatin in long-range regulatory interactions and suggest that heterochromatin imposes at the mating-type region structural organization that is important for the donor-choice mechanism.


Journal of Cell Biology | 2012

Csi1 links centromeres to the nuclear envelope for centromere clustering

Haitong Hou; Zhou Zhou; Yu Wang; Jiyong Wang; Scott P. Kallgren; Tatiana Kurchuk; Elizabeth A. Miller; Fred Chang; Songtao Jia

Csi1 promotes centromere clustering by linking centromeres to the SUN domain protein Sad1 in the nuclear envelope.


Journal of Biological Chemistry | 2010

Histone Variant H2A.Z Regulates Centromere Silencing and Chromosome Segregation in Fission Yeast

Haitong Hou; Yu Wang; Scott P. Kallgren; James Thompson; John R. Yates; Songtao Jia

The incorporation of histone variant H2A.Z into nucleosomes plays essential roles in regulating chromatin structure and gene expression. A multisubunit complex containing chromatin remodeling protein Swr1 is responsible for the deposition of H2A.Z in budding yeast and mammals. Here, we show that the JmjC domain protein Msc1 is a novel component of the fission yeast Swr1 complex and is required for Swr1-mediated incorporation of H2A.Z into nucleosomes at gene promoters. Loss of Msc1, Swr1, or H2A.Z results in loss of silencing at centromeres and defective chromosome segregation, although centromeric levels of CENP-A, a centromere-specific histone H3 variant that is required for setting up the chromatin structure at centromeres, remain unchanged. Intriguingly, H2A.Z is required for the expression of another centromere protein, CENP-C, and overexpression of CENP-C rescues centromere silencing defects associated with H2A.Z loss. These results demonstrate the importance of H2A.Z and CENP-C in maintaining a silenced chromatin state at centromeres.


Journal of Biological Chemistry | 2012

Histone H3 Lysine 14 Acetylation Is Required for Activation of a DNA Damage Checkpoint in Fission Yeast

Yu Wang; Scott P. Kallgren; Bharat Reddy; Karen Kuntz; Luis López-Maury; James Thompson; Stephen Watt; Chun Ma; Haitong Hou; Yang Shi; John R. Yates; Jürg Bähler; Matthew J. O'Connell; Songtao Jia

Background: Histone acetylation regulates diverse cellular processes. Results: The fission yeast Mst2 complex is a specific histone H3 lysine 14 acetyltransferase. Conclusion: H3K14 acetylation is required for DNA damage checkpoint activation. Significance: These analyses define the in vivo functions of the acetylation of a single histone lysine residue. Histone lysine acetylation has emerged as a key regulator of genome organization. However, with a few exceptions, the contribution of each acetylated lysine to cellular functions is not well understood because of the limited specificity of most histone acetyltransferases and histone deacetylases. Here we show that the Mst2 complex in Schizosaccharomyces pombe is a highly specific H3 lysine 14 (H3K14) acetyltransferase that functions together with Gcn5 to regulate global levels of H3K14 acetylation (H3K14ac). By analyzing the effect of H3K14ac loss through both enzymatic inactivation and histone mutations, we found that H3K14ac is critical for DNA damage checkpoint activation by directly regulating the compaction of chromatin and by recruiting chromatin remodeling protein complex RSC.


Genes & Development | 2013

Epe1 recruits BET family bromodomain protein Bdf2 to establish heterochromatin boundaries

Jiyong Wang; Xavier Tadeo; Haitong Hou; Patricia G. Tu; James Thompson; John R. Yates; Songtao Jia

Heterochromatin spreading leads to the silencing of genes within its path, and boundary elements have evolved to constrain such spreading. In fission yeast, heterochromatin at centromeres I and III is flanked by inverted repeats termed IRCs, which are required for proper boundary functions. However, the mechanisms by which IRCs prevent heterochromatin spreading are unknown. Here, we identified Bdf2, which is homologous to the mammalian bromodomain and extraterminal (BET) family double bromodomain proteins involved in diverse types of cancers, as a factor required for proper boundary function at IRCs. Bdf2 is enriched at IRCs through its interaction with the boundary protein Epe1. The bromodomains of Bdf2 recognize acetylated histone H4 tails and antagonize Sir2-mediated deacetylation of histone H4K16. Furthermore, abolishing H4K16 acetylation (H4K16ac) with an H4K16R mutation promotes heterochromatin spreading, and mimicking H4K16ac by an H4K16Q mutation blocks heterochromatin spreading at IRCs. Our results thus illustrate a mechanism of establishing chromosome boundaries at specific sites through the recruitment of a factor that protects euchromatic histone modifications. They also reveal a previously unappreciated function of H4K16ac in cooperation with H3K9 methylation to regulate heterochromatin spreading.


Development | 2006

Uncoupling Dorsal-mediated activation from Dorsal-mediated repression in the Drosophila embryo

Girish S. Ratnaparkhi; Songtao Jia; Albert J. Courey

The Rel family transcription factor Dorsal patterns the dorsoventral axis of the Drosophila embryo by activating genes such as twist and snail and repressing genes such as decapentaplegic and zerknüllt. Dorsal represses transcription by recruiting the co-repressor Groucho. However, repression occurs only when Dorsal-binding sites are close to binding sites for other factors that also bind Groucho. The need for additional factors to assist Dorsal in repression may result from the intrinsically weak interaction between Dorsal and Groucho. To test this idea, we generated a Dorsal variant containing a high-affinity Groucho recruitment motif at its C terminus. As predicted, this variant functions as a dedicated repressor, silencing decapentaplegic and zerknüllt while failing to activate twist and snail. We also converted Dorsal into a dedicated activator by replacing its weak Groucho-recruitment motif with heterologous activation domains. Although the dedicated activator alleles fail to repress decapentaplegic and zerknüllt in the syncytial blastoderm embryo, they are able to pattern the dorsoventral axis. This indicates that dorsoventral patterning is not dependent upon Dorsal-mediated repression, reflecting the existence of redundant mechanisms to block Decapentaplegic signaling.

Collaboration


Dive into the Songtao Jia's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

John R. Yates

Scripps Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Shiv I. S. Grewal

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

James J. Moresco

Scripps Research Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge