Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Stephen B. Aley is active.

Publication


Featured researches published by Stephen B. Aley.


Science | 2007

Genomic Minimalism in the Early Diverging Intestinal Parasite Giardia lamblia

Hilary G. Morrison; Andrew G. McArthur; Frances D. Gillin; Stephen B. Aley; Rodney D. Adam; Gary J. Olsen; Aaron A. Best; W. Zacheus Cande; Feng Chen; Michael J. Cipriano; Barbara J. Davids; Scott C. Dawson; Heidi G. Elmendorf; Adrian B. Hehl; Michael E. Holder; Susan M. Huse; Ulandt Kim; Erica Lasek-Nesselquist; Gerard Manning; Anuranjini Nigam; Julie E. J. Nixon; Daniel Palm; Nora Q.E. Passamaneck; Anjali Prabhu; Claudia I. Reich; David S. Reiner; John Samuelson; Staffan G. Svärd; Mitchell L. Sogin

The genome of the eukaryotic protist Giardia lamblia, an important human intestinal parasite, is compact in structure and content, contains few introns or mitochondrial relics, and has simplified machinery for DNA replication, transcription, RNA processing, and most metabolic pathways. Protein kinases comprise the single largest protein class and reflect Giardias requirement for a complex signal transduction network for coordinating differentiation. Lateral gene transfer from bacterial and archaeal donors has shaped Giardias genome, and previously unknown gene families, for example, cysteine-rich structural proteins, have been discovered. Unexpectedly, the genome shows little evidence of heterozygosity, supporting recent speculations that this organism is sexual. This genome sequence will not only be valuable for investigating the evolution of eukaryotes, but will also be applied to the search for new therapeutics for this parasite.


Molecular and Biochemical Parasitology | 1987

Localization of Plasmodium falciparum histidine-rich protein 1 in the erythrocyte skeleton under knobs.

Diane W. Taylor; Marcela Parra; George B. Chapman; Mark E. Stearns; Joan Rener; Masamichi Aikawa; Shigehiko Uni; Stephen B. Aley; Lindsey J. Panton; Russell J. Howard

Plasmodium falciparum parasites that induce knobs in the host erythrocyte membrane (K+ phenotype) synthesize a 90 kDa histidine-rich protein (PfHRP-1), whereas knobless variants do not. A monoclonal antibody (mAb 89) to PfHRP-1, in combination with cryo-thin section immunoelectron microscopy, localized the antigen in the parasitophorous vacuolar space and vesicles within the erythrocyte cytosol. Additional immunoelectron microscopic studies showed that PfHRP-1 was also associated with submembranous electron-dense material under knobs and with microfilaments of the host erythrocyte skeletal network. Immunofluorescence and immunoelectron microscopy of intact, non-fixed K+ infected erythrocytes using mAb 89 and a rabbit antiserum raised against purified PfHRP-1, failed to identify any surface exposed epitopes. These antibodies also failed to block cytoadherence of infected erythrocytes to C32 melanoma cells or to affect macrophage phagocytosis of infected erythrocytes.


Journal of Biological Chemistry | 1999

Novel protein-disulfide isomerases from the early-diverging protist giardia lamblia

Leigh A. Knodler; Noiva R; Mehta K; McCaffery Jm; Stephen B. Aley; Staffan G. Svärd; Todd G. Nystul; David S. Reiner; Silberman Jd; Frances D. Gillin

Protein-disulfide isomerase is essential for formation and reshuffling of disulfide bonds during nascent protein folding in the endoplasmic reticulum. The two thioredoxin-like active sites catalyze a variety of thiol-disulfide exchange reactions. We have characterized three novel protein-disulfide isomerases from the primitive eukaryote Giardia lamblia. Unlike other protein-disulfide isomerases, the giardial enzymes have only one active site. The active-site sequence motif in the giardial proteins (CGHC) is characteristic of eukaryotic protein-disulfide isomerases, and not other members of the thioredoxin superfamily that have one active site, such as thioredoxin and Dsb proteins from Gram-negative bacteria. The three giardial proteins have very different amino acid sequences and molecular masses (26, 50, and 13 kDa). All three enzymes were capable of rearranging disulfide bonds, and giardial protein-disulfide isomerase-2 also displayed oxidant and reductant activities. Surprisingly, the three giardial proteins also had Ca2+-dependent transglutaminase activity. This is the first report of protein-disulfide isomerases with a single active site that have diverse roles in protein cross-linking. This study may provide clues to the evolution of key functions of the endoplasmic reticulum in eukaryotic cells, protein disulfide formation, and isomerization.


Molecular and Biochemical Parasitology | 1998

Sequence survey of the Giardia lamblia genome.

Michael W. Smith; Stephen B. Aley; Mitchell L. Sogin; Frances D. Gillin; Glen A. Evans

The parasitic protozoan Giardia lamblia represents one of the earliest diverging lineages in the evolutionary history of eukaryotic organisms as well as an important human pathogen. A representative sampling of gene sequences from this early diverging protozoan could provide insights into genotypic and phenotypic innovations associated with the origin of eukaryotes. Currently, known giardial gene sequences are heavily biased toward a few gene families, including variant surface proteins (VSPs), structural proteins, and ribosomal RNA genes. One-pass sequences of Giardia genomic DNA were obtained using vector flanking priming sequences on the ends of cosmids in two independent libraries. Comparisons of 2304 of these sequences against the GenBank database identified 205 potential giardial genes with BLAST scores P(n) < 10(9). These coding regions encompass a wide range of metabolic, repair, and signaling enzymes, and include some genes not predicted by our current understanding of Giardia biochemistry. The efficiency of identification of putative genes is consistent with earlier findings that coding regions in the Giardia genome are densely packed and do not appear to contain introns. Our current results suggest that direct genome sequencing is an efficient method for identifying giardial genes for evolutionary and biochemical studies.


Molecular and Biochemical Parasitology | 1996

Developmentally regulated transcripts and evidence of differential mRNA processing in Giardia lamblia

Xuchu Que; Staffan G. Svärd; Tze-Chiang Meng; Michael L. Hetsko; Stephen B. Aley; Frances D. Gillin

Although encystation and excystation are crucial to transmission of Giardia lamblia, little is known about the regulation of these very distinct differentiation processes. Fingerprinting of giardial mRNA populations throughout the time course of differentiation demonstrated complex patterns in mRNA differential display. Certain transcripts appeared or increased, while others decreased or disappeared at specific times, in response to physiologic stimuli that mimic key stages in parasite descent through the host gastrointestinal tract. This approach has allowed the direct identification of critical stages in differentiation, as well as isolation of genes which may be crucial to the development of G. lamblia. One stage-specific single copy gene (ENC6) whose transcript is greatly upregulated during encystation was analyzed further. Partial sequence analysis revealed no correspondence with known genes. 3-rapid amplification of cDNA ends (3-RACE) analysis of ENC6 transcripts at various times of encystation revealed two polyadenylation sites. The more proximal site, 10 nucleotides past the single classic AGTAAA sequence, was utilized only during encystation and its transcript increased approximately 16-fold during the first 24 h of encystation. In contrast, a slightly divergent polyadenylation site 288 nucleotides downstream from the open reading frame (ORF) was used during both vegetative growth and encystation, although its transcript was present at low levels. These studies are the first evidence of differential mRNA processing in G. lamblia and suggest a potential role of the 3-untranslated region (3-UTR) in modulating gene expression during differentiation of this primitive eukaryote.


Parasitology | 2011

Lipid metabolism in Giardia : a post-genomic perspective

Mayte Yichoy; Trevor T. Duarte; A. De Chatterjee; Tavis L. Mendez; K. Y. Aguilera; Debarshi Roy; Sukla Roychowdhury; Stephen B. Aley; Siddhartha Das

Giardia lamblia, a protozoan parasite, infects a wide variety of vertebrates, including humans. Studies indicate that this anaerobic protist possesses a limited ability to synthesize lipid molecules de novo and depends on supplies from its environment for growth and differentiation. It has been suggested that most lipids and fatty acids are taken up by endocytic and non-endocytic pathways and are used by Giardia for energy production and membrane/organelle biosynthesis. The purpose of this article is to provide an update on recent progress in the field of lipid research of this parasite and the validation of lipid metabolic pathways through recent genomic information. Based on current cellular, biochemical and genomic data, a comprehensive pathway has been proposed to facilitate our understanding of lipid and fatty acid metabolism/syntheses in this waterborne pathogen. We envision that the current review will be helpful in identifying targets from the pathways that could be used to design novel therapies to control giardiasis and related diseases.


Experimental Parasitology | 1987

Plasmodium falciparum: Elicitation by peptides and recombinant circumsporozoite proteins of circulating mouse antibodies inhibiting sporozoite invasion of hepatoma cells

Michael R. Hollingdale; W. Ripley Ballou; Stephen B. Aley; James F. Young; Samuel Pancake; Louis H. Miller; Wayne T. Hockmeyer

The immunodominant epitope region of the circumsporozoite protein of Plasmodium falciparum sporozoites contains 37 tandem repeats of the tetrapeptide Asn-Ala-Asn-Pro and 4 repeats of Asn-Val-Asp-Pro. Synthetic peptides and recombinant proteins of the repeat region were used to immunize mice using different doses and adjuvants. Antisera were tested for inhibition of sporozoite invasion of cultured human hepatoma cells. Synthetic peptides and recombinant proteins elicited high levels of antibodies that inhibited sporozoite invasion when emulsified with complete Freunds adjuvant. Since recombinant proteins with alum elicited a better antibody response to sporozoite invasion than they did without adjuvant, it may be that a recombinant protein containing 32 tandem copies of the tetrapeptide repeat combined with alum could be a candidate malarial vaccine suitable for human trials.


Molecular and Biochemical Parasitology | 2009

Lipidomic Analysis Reveals That Phosphatidylglycerol and Phosphatidylethanolamine are Newly Generated Phospholipids in an Early-Divergent Protozoan, Giardia lamblia

Mayte Yichoy; Ernesto S. Nakayasu; Max Shpak; Clemente Aguilar; Stephen B. Aley; Igor C. Almeida; Siddhartha Das

The pathogenic protozoan Giardia lamblia is known to not synthesize membrane lipids de novo. Therefore, it is possible that lipids in the small intestine, where trophozoites colonize, play key roles in regulating the growth and differentiation of this important pathogen. The focus of the current study is to conduct a complete lipidomic analysis and to test the hypothesis that Giardia has some ability to generate new phospholipids (PLs). Using mass spectrometry, now we show that phosphatidylglycerols (PGs) are major PLs followed by phosphatidylcholines (PCs) and phosphatidylethanolamines (PEs) in non-encysting and encysting trophozoites, as well in cysts. The fatty acids attached to these PLs consist mostly of palmitate, palmitoleate, oleate, and linoleate. Results also indicate that PGs and PEs, unlike PCs, are not present in bovine bile and serum, the major sources of lipids of the culture medium, and that they could therefore be produced by fatty acid and headgroup remodeling reactions, circumventing the synthesis of entirely new PLs via de novo pathways. Genomic and transcriptional analyses show the presence of giardial phosphatidylglycerolphosphate synthase (gpgps) and phosphatidylserine decarboxylase (gpsd) genes, which are expressed throughout the life cycle. Bioinformatic and phylogenetic analyses further indicated that both genes are of prokaryotic origin and that they have undergone duplication in the course of evolution. Our studies suggest that the abundance of PG in Giardia is unique among eukaryotes and that its synthesis thus could serve as a potential target for developing new therapies against this waterborne parasite.


Experimental Parasitology | 1987

Plasmodium vivax: Exoerythrocytic schizonts recognized by monoclonal antibodies against blood-stage schizonts

Stephen B. Aley; John W. Barnwell; Michelle D. Bates; William E. Collins; Michael R. Hollingdale

Exoerythrocytic parasites of Plasmodium vivax grown in human hepatoma cells in vitro were probed with monoclonal antibodies raised against other stages of P. vivax. Monoclonal antibodies specific for four independent antigens on blood-stage merozoites all reacted with exoerythrocytic schizonts and merozoites by immunostaining. The characteristic staining pattern of each monoclonal antibody was similar on both blood- and exoerythrocytic-stage parasites and appeared only in mature schizont segmenters. In contrast, a monoclonal antibody specific for the caveolar-vesicle complex of the infected host cell membrane and a second monoclonal antibody reacting with an unknown internal antigen did not appear to react with exoerythrocytic parasites. We confirm prior reports that monoclonal antibodies against the sporozoite immunodominant repeat antigen react with all exoerythrocytic-stage parasites, but note that as the exoerythrocytic parasite matures the immunostaining is concentrated in plaques reminiscent of germinal centers and apparently distinct from mature merozoites. These results indicate that mature merozoites from either exoerythrocytic or blood-stage parasites are antigenically very similar, but that stage-specific antigens may be found in specialized structures present only in a specific host cell type.


Journal of Eukaryotic Microbiology | 2007

Transcriptional analysis of three major putative phosphatidylinositol kinase genes in a parasitic protozoan, Giardia lamblia.

Yunuen Hernandez; Gus Zamora; Suparna Ray; Jaime Chapoy; Edna Chavez; Robert Valvarde; Ebonye Williams; Stephen B. Aley; Siddhartha Das

ABSTRACT. The current investigation evaluates the expression of phosphatidylinositol kinase (PIK) genes in the parasitic protozoan, Giardia lamblia. The G. lamblia Genome Database revealed the presence of two putative phosphatidylinositol‐3‐kinase (gPI3K) and one phosphatidylinositol‐4‐kinase (gPI4K) genes resembling the catalytic subunit of eukaryotic PIKs. Primers, designed to amplify mRNA of these three genes, were used to measure transcription by quantitative reverse‐transcriptase polymerase chain reactions. Results suggest that all three PIK genes are expressed in non‐encysting and encysting trophozoites. The relative levels of the mRNA were highest in parasites cultured in pre‐encysting medium that contained no bile. Two inhibitors of PI3K, LY 294002 and wortmannin were found to inhibit the growth of the trophozoite in culture. However, wortmannin was more effective than LY294002. Altogether, the present study indicates that Giardia is capable of expressing PIKs that are necessary for the growth and differentiation of this pathogen.

Collaboration


Dive into the Stephen B. Aley's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Siddhartha Das

University of Texas at El Paso

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mitchell L. Sogin

Marine Biological Laboratory

View shared research outputs
Top Co-Authors

Avatar

Diane W. Taylor

University of Hawaii at Manoa

View shared research outputs
Top Co-Authors

Avatar

Mayte Yichoy

University of Texas at El Paso

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michael W. Smith

Science Applications International Corporation

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrew G. McArthur

Marine Biological Laboratory

View shared research outputs
Researchain Logo
Decentralizing Knowledge