Steven Chuang
University of California, Berkeley
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Steven Chuang.
Nano Letters | 2012
Hui Fang; Steven Chuang; Ting Chia Chang; Kuniharu Takei; Toshitake Takahashi; Ali Javey
We report high performance p-type field-effect transistors based on single layered (thickness, ∼0.7 nm) WSe(2) as the active channel with chemically doped source/drain contacts and high-κ gate dielectrics. The top-gated monolayer transistors exhibit a high effective hole mobility of ∼250 cm(2)/(V s), perfect subthreshold swing of ∼60 mV/dec, and I(ON)/I(OFF) of >10(6) at room temperature. Special attention is given to lowering the contact resistance for hole injection by using high work function Pd contacts along with degenerate surface doping of the contacts by patterned NO(2) chemisorption on WSe(2). The results here present a promising material system and device architecture for p-type monolayer transistors with excellent characteristics.
Nano Letters | 2014
Steven Chuang; Corsin Battaglia; Angelica Azcatl; Stephen McDonnell; Jeong Seuk Kang; Xingtian Yin; Mahmut Tosun; Rehan Kapadia; Hui Fang; Robert M. Wallace; Ali Javey
The development of low-resistance source/drain contacts to transition-metal dichalcogenides (TMDCs) is crucial for the realization of high-performance logic components. In particular, efficient hole contacts are required for the fabrication of p-type transistors with MoS2, a model TMDC. Previous studies have shown that the Fermi level of elemental metals is pinned close to the conduction band of MoS2, thus resulting in large Schottky barrier heights for holes with limited hole injection from the contacts. Here, we show that substoichiometric molybdenum trioxide (MoOx, x < 3), a high work function material, acts as an efficient hole injection layer to MoS2 and WSe2. In particular, we demonstrate MoS2 p-type field-effect transistors and diodes by using MoOx contacts. We also show drastic on-current improvement for p-type WSe2 FETs with MoOx contacts over devices made with Pd contacts, which is the prototypical metal used for hole injection. The work presents an important advance in contact engineering of TMDCs and will enable future exploration of their performance limits and intrinsic transport properties.
ACS Nano | 2014
Mahmut Tosun; Steven Chuang; Hui Fang; Angada B. Sachid; Mark Hettick; Yuping Zeng; Ali Javey
In this work, the operation of n- and p-type field-effect transistors (FETs) on the same WSe2 flake is realized,and a complementary logic inverter is demonstrated. The p-FET is fabricated by contacting WSe2 with a high work function metal, Pt, which facilities hole injection at the source contact. The n-FET is realized by utilizing selective surface charge transfer doping with potassium to form degenerately doped n+ contacts for electron injection. An ON/OFF current ratio of >10(4) is achieved for both n- and p-FETs with similar ON current densities. A dc voltage gain of >12 is measured for the complementary WSe2 inverter. This work presents an important advance toward realization of complementary logic devices based on layered chalcogenide semiconductors for electronic applications.
Nano Letters | 2013
Steven Chuang; Qun Gao; Rehan Kapadia; Alexandra C. Ford; Jing Guo; Ali Javey
Ballistic transport of electrons at room temperature in top-gated InAs nanowire (NW) transistors is experimentally observed and theoretically examined. From length dependent studies, the low-field mean free path is directly extracted as ~150 nm. The mean free path is found to be independent of temperature due to the dominant role of surface roughness scattering. The mean free path was also theoretically assessed by a method that combines Fermis golden rule and a numerical Schrödinger-Poisson simulation to determine the surface scattering potential with the theoretical calculations being consistent with experiments. Near ballistic transport (~80% of the ballistic limit) is demonstrated experimentally for transistors with a channel length of ~60 nm, owing to the long mean free path of electrons in InAs NWs.
ACS Nano | 2014
Stephen McDonnell; Angelica Azcatl; Rafik Addou; Cheng Gong; Corsin Battaglia; Steven Chuang; Kyeongjae Cho; Ali Javey; Robert M. Wallace
MoOx shows promising potential as an efficient hole injection layer for p-FETs based on transition metal dichalcogenides. A combination of experiment and theory is used to study the surface and interfacial chemistry, as well as the band alignments for MoOx/MoS2 and MoOx/WSe2 heterostructures, using photoelectron spectroscopy, scanning tunneling microscopy, and density functional theory. A Mo(5+) rich interface region is identified and is proposed to explain the similar low hole Schottky barriers reported in a recent device study utilizing MoOx contacts on MoS2 and WSe2.
Applied Physics Letters | 2011
Alexandra C. Ford; Chun Wing Yeung; Steven Chuang; Ha Sul Kim; E. Plis; Sanjay Krishna; Chenming Hu; Ali Javey
An ultrathin body InAs tunneling field-effect transistor on Si substrate is demonstrated by using an epitaxial layer transfer technique. A postgrowth, zinc surface doping approach is used for the formation of a p+ source contact which minimizes lattice damage to the ultrathin body InAs compared to ion implantation. The transistor exhibits gated negative differential resistance behavior under forward bias, confirming the tunneling operation of the device. In this device architecture, the ON current is dominated by vertical band-to-band tunneling and is thereby less sensitive to the junction abruptness. The work presents a device and materials platform for exploring III–V tunnel transistors.
Nano Letters | 2012
Kuniharu Takei; Morten Madsen; Hui Fang; Rehan Kapadia; Steven Chuang; Ha Sul Kim; Chin-Hung Liu; E. Plis; Junghyo Nah; Sanjay Krishna; Yu-Lun Chueh; Jing Guo; Ali Javey
As of yet, III-V p-type field-effect transistors (p-FETs) on Si have not been reported, due partly to materials and processing challenges, presenting an important bottleneck in the development of complementary III-V electronics. Here, we report the first high-mobility III-V p-FET on Si, enabled by the epitaxial layer transfer of InGaSb heterostructures with nanoscale thicknesses. Importantly, the use of ultrathin (thickness, ~2.5 nm) InAs cladding layers results in drastic performance enhancements arising from (i) surface passivation of the InGaSb channel, (ii) mobility enhancement due to the confinement of holes in InGaSb, and (iii) low-resistance, dopant-free contacts due to the type III band alignment of the heterojunction. The fabricated p-FETs display a peak effective mobility of ~820 cm(2)/(V s) for holes with a subthreshold swing of ~130 mV/decade. The results present an important advance in the field of III-V electronics.
Applied Physics Letters | 2013
Steven Chuang; Rehan Kapadia; Hui Fang; Ting Chia Chang; Wen-Chun Yen; Yu-Lun Chueh; Ali Javey
Here, we present the fabrication and electrical analysis of InAs/WSe2 van der Waals heterojunction diodes formed by the transfer of ultrathin membranes of one material upon another. Notably, InAs and WSe2 are two materials with completely different crystal structures, which heterojunction is inconceivable with traditional epitaxial growth techniques. Clear rectification from the n-InAs/p-WSe2 junction (forward/reverse current ratio >106) is observed. A low reverse bias current <10−12A/μm2 and ideality factor of ∼1.1 were achieved, suggesting near-ideal electrically active interfaces.
Nano Letters | 2015
Tae-Jun Ha; Kevin P. Chen; Steven Chuang; Kin Man Yu; Daisuke Kiriya; Ali Javey
Air-stable n-doping of carbon nanotubes is presented by utilizing SiN(x) thin films deposited by plasma-enhanced chemical vapor deposition. The fixed positive charges in SiN(x), arising from (+)Si ≡ N3 dangling bonds induce strong field-effect doping of underlying nanotubes. Specifically, an electron doping density of ∼ 10(20) cm(-3) is estimated from capacitance voltage measurements of the fixed charge within the SiN(x). This high doping concentration results in thinning of the Schottky barrier widths at the nanotube/metal contacts, thus allowing for efficient injection of electrons by tunnelling. As a proof-of-concept, n-type thin-film transistors using random networks of semiconductor-enriched nanotubes are presented with an electron mobility of ∼ 10 cm(2)/V s, which is comparable to the hole mobility of as-made p-type devices. The devices are highly stable without any noticeable change in the electrical properties upon exposure to ambient air for 30 days. Furthermore, the devices exhibit high uniformity over large areas, which is an important requirement for use in practical applications. The work presents a robust approach for physicochemical doping of carbon nanotubes by relying on field-effect rather than a charge transfer mechanism.
Applied Physics Letters | 2011
Kuniharu Takei; Steven Chuang; Hui Fang; Rehan Kapadia; Chin-Hung Liu; Junghyo Nah; Ha Sul Kim; E. Plis; Sanjay Krishna; Yu-Lun Chueh; Ali Javey
The effect of body thickness (5-13 nm) on the leakage currents of top-gated, InAs-on-insulator field-effect-transistors with a channel length of ∼200 nm is explored. From a combination of experiments and simulation, it is found that the OFF-state currents are primarily dominated by Shockley Read Hall recombination/generation and trap-assisted tunneling. The OFF currents are shown to decrease with thickness reduction, highlighting the importance of the ultrathin body device configuration. The devices exhibit promising performances, with a peak extrinsic and intrinsic transconductances of ∼1.7 and 2.3 mS/μm, respectively, at a low source/drain voltage of 0.5 V and a body thickness of ∼13 nm.