Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Steven P. Bachman is active.

Publication


Featured researches published by Steven P. Bachman.


ZooKeys | 2011

Supporting Red List threat assessments with GeoCAT: geospatial conservation assessment tool

Steven P. Bachman; Justin Moat; Andrew W. Hill; Javier de la Torre; Ben Scott

Abstract GeoCAT is an open source, browser based tool that performs rapid geospatial analysis to ease the process of Red Listing taxa. Developed to utilise spatially referenced primary occurrence data, the analysis focuses on two aspects of the geographic range of a taxon: the extent of occurrence (EOO) and the area of occupancy (AOO). These metrics form part of the IUCN Red List categories and criteria and have often proved challenging to obtain in an accurate, consistent and repeatable way. Within a familiar Google Maps environment, GeoCAT users can quickly and easily combine data from multiple sources such as GBIF, Flickr and Scratchpads as well as user generated occurrence data. Analysis is done with the click of a button and is visualised instantly, providing an indication of the Red List threat rating, subject to meeting the full requirements of the criteria. Outputs including the results, data and parameters used for analysis are stored in a GeoCAT file that can be easily reloaded or shared with collaborators. GeoCAT is a first step toward automating the data handling process of Red List assessing and provides a valuable hub from which further developments and enhancements can be spawned.


PLOS ONE | 2013

Scientific Foundations for an IUCN Red List of Ecosystems

David A. Keith; Jon Paul Rodríguez; Kathryn M. Rodríguez-Clark; Emily Nicholson; Kaisu Aapala; Alfonso Alonso; Marianne Asmüssen; Steven P. Bachman; Alberto Basset; Edmund G. Barrow; John Benson; Melanie J. Bishop; Ronald Bonifacio; Thomas M. Brooks; Mark A. Burgman; Patrick J. Comer; Francisco A. Comín; Franz Essl; Don Faber-Langendoen; Peter G. Fairweather; Robert J. Holdaway; Michael Jennings; Richard T. Kingsford; Rebecca E. Lester; Ralph Mac Nally; Michael A. McCarthy; Justin Moat; María A. Oliveira-Miranda; Phil Pisanu; Brigitte Poulin

An understanding of risks to biodiversity is needed for planning action to slow current rates of decline and secure ecosystem services for future human use. Although the IUCN Red List criteria provide an effective assessment protocol for species, a standard global assessment of risks to higher levels of biodiversity is currently limited. In 2008, IUCN initiated development of risk assessment criteria to support a global Red List of ecosystems. We present a new conceptual model for ecosystem risk assessment founded on a synthesis of relevant ecological theories. To support the model, we review key elements of ecosystem definition and introduce the concept of ecosystem collapse, an analogue of species extinction. The model identifies four distributional and functional symptoms of ecosystem risk as a basis for assessment criteria: A) rates of decline in ecosystem distribution; B) restricted distributions with continuing declines or threats; C) rates of environmental (abiotic) degradation; and D) rates of disruption to biotic processes. A fifth criterion, E) quantitative estimates of the risk of ecosystem collapse, enables integrated assessment of multiple processes and provides a conceptual anchor for the other criteria. We present the theoretical rationale for the construction and interpretation of each criterion. The assessment protocol and threat categories mirror those of the IUCN Red List of species. A trial of the protocol on terrestrial, subterranean, freshwater and marine ecosystems from around the world shows that its concepts are workable and its outcomes are robust, that required data are available, and that results are consistent with assessments carried out by local experts and authorities. The new protocol provides a consistent, practical and theoretically grounded framework for establishing a systematic Red List of the world’s ecosystems. This will complement the Red List of species and strengthen global capacity to report on and monitor the status of biodiversity


Conservation Biology | 2009

Plant Diversity Hotspots in the Atlantic Coastal Forests of Brazil

Charlotte Murray-Smith; Neil Brummitt; Ary Teixeira de Oliveira-Filho; Steven P. Bachman; Justin Moat; Eimear Nic Lughadha; Eve Lucas

Plant-diversity hotspots on a global scale are well established, but smaller local hotspots within these must be identified for effective conservation of plants at the global and local scales. We used the distributions of endemic and endemic-threatened species of Myrtaceae to indicate areas of plant diversity and conservation importance within the Atlantic coastal forests (Mata Atlântica) of Brazil. We applied 3 simple, inexpensive geographic information system (GIS) techniques to a herbarium specimen database: predictive species-distribution modeling (Maxent); complementarity analysis (DIVA-GIS); and mapping of herbarium specimen collection locations. We also considered collecting intensity, which is an inherent limitation of use of natural history records for biodiversity studies. Two separate areas of endemism were evident: the Serra do Mar mountain range from Paraná to Rio de Janeiro and the coastal forests of northern Espírito Santo and southern Bahia. We identified 12 areas of approximately 35 km(2) each as priority areas for conservation. These areas had the highest species richness and were highly threatened by urban and agricultural expansion. Observed species occurrences, species occurrences predicted from the model, and results of our complementarity analysis were congruent in identifying those areas with the most endemic species. These areas were then prioritized for conservation importance by comparing ecological data for each.


PLOS ONE | 2015

Green Plants in the Red: A Baseline Global Assessment for the IUCN Sampled Red List Index for Plants.

Neil Brummitt; Steven P. Bachman; Janine Griffiths-Lee; Maiko Lutz; Justin Moat; Aljos Farjon; John S. Donaldson; Craig Hilton-Taylor; Thomas R. Meagher; Sara Albuquerque; Elina Aletrari; A. Kei Andrews; Guy Atchison; Elisabeth Baloch; Barbara Barlozzini; Alice Brunazzi; Julia Carretero; Marco Celesti; Helen Chadburn; Eduardo Cianfoni; Chris Cockel; Vanessa Coldwell; Benedetta Concetti; Sara Contu; Vicki Crook; Philippa Dyson; Lauren M. Gardiner; Nadia Ghanim; Hannah Greene; Alice Groom

Plants provide fundamental support systems for life on Earth and are the basis for all terrestrial ecosystems; a decline in plant diversity will be detrimental to all other groups of organisms including humans. Decline in plant diversity has been hard to quantify, due to the huge numbers of known and yet to be discovered species and the lack of an adequate baseline assessment of extinction risk against which to track changes. The biodiversity of many remote parts of the world remains poorly known, and the rate of new assessments of extinction risk for individual plant species approximates the rate at which new plant species are described. Thus the question ‘How threatened are plants?’ is still very difficult to answer accurately. While completing assessments for each species of plant remains a distant prospect, by assessing a randomly selected sample of species the Sampled Red List Index for Plants gives, for the first time, an accurate view of how threatened plants are across the world. It represents the first key phase of ongoing efforts to monitor the status of the world’s plants. More than 20% of plant species assessed are threatened with extinction, and the habitat with the most threatened species is overwhelmingly tropical rain forest, where the greatest threat to plants is anthropogenic habitat conversion, for arable and livestock agriculture, and harvesting of natural resources. Gymnosperms (e.g. conifers and cycads) are the most threatened group, while a third of plant species included in this study have yet to receive an assessment or are so poorly known that we cannot yet ascertain whether they are threatened or not. This study provides a baseline assessment from which trends in the status of plant biodiversity can be measured and periodically reassessed.


Biodiversity and Conservation | 2010

Subpopulations, locations and fragmentation: applying IUCN red list criteria to herbarium specimen data

Malin C. Rivers; Steven P. Bachman; Thomas R. Meagher; Eimear Nic Lughadha; Neil Brummitt

Despite the ecological and economic importance of plants, the majority of plant species and their conservation status are still poorly known. Based on the limited knowledge we have of many plant species, especially those in the tropics, the use of GIS techniques can give us estimates of the degree of population subdivision to be used in conservation assessments of extinction risk. This paper evaluates how best to use the IUCN Red List Categories and Criteria to produce effective and consistent estimates of subpopulation structure based on specimen data available in the herbaria around the world. We assessed population structure through GIS-based analysis of the geographic distribution of collections, using herbarium specimen data for 11 species of Delonix sensu lato. We used four methods: grid adjacency, circular buffer, Rapoport’s mean propinquity and alpha hull, to quantify population structure according to the terms used in the IUCN Red List: numbers of subpopulations and locations, and degree of fragmentation. Based on our findings, we recommend using the circular buffer method, as it is not dependent on collection density and allows points to be added, subtracted and/or moved without altering the buffer placement. The ideal radius of the buffer is debatable; however when dispersal characteristics of the species are unknown then a sliding scale, such as the 1/10th maximum inter-point distance, is the preferred choice, as it is species-specific and not sensitive to collection density. Such quantitative measures of population structure provide a rigorous means of applying IUCN criteria to a wide range of plant species that hitherto were inaccessible to IUCN classification.


Philosophical Transactions of the Royal Society B | 2015

Incorporating evolutionary history into conservation planning in biodiversity hotspots.

Sven Buerki; Martin W. Callmander; Steven P. Bachman; Justin Moat; Jean-Noël Labat; Félix Forest

There is increased evidence that incorporating evolutionary history directly in conservation actions is beneficial, particularly given the likelihood that extinction is not random and that phylogenetic diversity (PD) is lost at higher rates than species diversity. This evidence is even more compelling in biodiversity hotspots, such as Madagascar, where less than 10% of the original vegetation remains. Here, we use the Leguminosae, an ecologically and economically important plant family, and a combination of phylogenetics and species distribution modelling, to assess biodiversity patterns and identify regions, coevolutionary processes and ecological factors that are important in shaping this diversity, especially during the Quaternary. We show evidence that species distribution and community PD are predicted by watershed boundaries, which enable the identification of a network of refugia and dispersal corridors that were perhaps important for maintaining community integrity during past climate change. Phylogenetically clustered communities are found in the southwest of the island at low elevation and share a suite of morphological characters (especially fruit morphology) indicative of coevolution with their main dispersers, the extinct and extant lemurs. Phylogenetically over-dispersed communities are found along the eastern coast at sea level and may have resulted from many independent dispersal events from the drier and more seasonal regions of Madagascar.


Biology Letters | 2016

Clarifying misconceptions of extinction risk assessment with the IUCN Red List.

Ben Collen; Nicholas K. Dulvy; Kevin J. Gaston; Ulf Gärdenfors; David A. Keith; André E. Punt; Helen M. Regan; Monika Böhm; Simon Hedges; M Seddon; Stuart H. M. Butchart; Craig Hilton-Taylor; Michael R. Hoffmann; Steven P. Bachman; Hr Akçakaya

The identification of species at risk of extinction is a central goal of conservation. As the use of data compiled for IUCN Red List assessments expands, a number of misconceptions regarding the purpose, application and use of the IUCN Red List categories and criteria have arisen. We outline five such classes of misconception; the most consequential drive proposals for adapted versions of the criteria, rendering assessments among species incomparable. A key challenge for the future will be to recognize the point where understanding has developed so markedly that it is time for the next generation of the Red List criteria. We do not believe we are there yet but, recognizing the need for scrutiny and continued development of Red Listing, conclude by suggesting areas where additional research could be valuable in improving the understanding of extinction risk among species.


Philosophical Transactions of the Royal Society B | 2015

The Sampled Red List Index for Plants, phase II: ground-truthing specimen-based conservation assessments

Neil Brummitt; Steven P. Bachman; Elina Aletrari; Helen Chadburn; Janine Griffiths-Lee; Maiko Lutz; Justin Moat; Malin C. Rivers; Mindy M. Syfert; Eimear Nic Lughadha

The IUCN Sampled Red List Index (SRLI) is a policy response by biodiversity scientists to the need to estimate trends in extinction risk of the worlds diminishing biological diversity. Assessments of plant species for the SRLI project rely predominantly on herbarium specimen data from natural history collections, in the overwhelming absence of accurate population data or detailed distribution maps for the vast majority of plant species. This creates difficulties in re-assessing these species so as to measure genuine changes in conservation status, which must be observed under the same Red List criteria in order to be distinguished from an increase in the knowledge available for that species, and thus re-calculate the SRLI. However, the same specimen data identify precise localities where threatened species have previously been collected and can be used to model species ranges and to target fieldwork in order to test specimen-based range estimates and collect population data for SRLI plant species. Here, we outline a strategy for prioritizing fieldwork efforts in order to apply a wider range of IUCN Red List criteria to assessments of plant species, or any taxa with detailed locality or natural history specimen data, to produce a more robust estimation of the SRLI.


PLOS ONE | 2014

Comprehensive Red List Assessment Reveals Exceptionally High Extinction Risk to Madagascar Palms

Mijoro Rakotoarinivo; John Dransfield; Steven P. Bachman; Justin Moat; William J. Baker

The establishment of baseline IUCN Red List assessments for plants is a crucial step in conservation planning. Nowhere is this more important than in biodiversity hotspots that are subject to significant anthropogenic pressures, such as Madagascar. Here, all Madagascar palm species are assessed using the IUCN Red List categories and criteria, version 3.1. Our results indicate that 83% of the 192 endemic species are threatened, nearly four times the proportion estimated for plants globally and exceeding estimates for all other comprehensively evaluated plant groups in Madagascar. Compared with a previous assessment in 1995, the number of Endangered and Critically Endangered species has substantially increased, due to the discovery of 28 new species since 1995, most of which are highly threatened. The conservation status of most species included in both the 1995 and the current assessments has not changed. Where change occurred, more species have moved to lower threat categories than to higher categories, because of improved knowledge of species and their distributions, rather than a decrease in extinction risk. However, some cases of genuine deterioration in conservation status were also identified. Palms in Madagascar are primarily threatened by habitat loss due to agriculture and biological resource use through direct exploitation or collateral damage. The recent extension of Madagascar’s protected area network is highly beneficial for palms, substantially increasing the number of threatened species populations included within reserves. Notably, three of the eight most important protected areas for palms are newly designated. However, 28 threatened and data deficient species are not protected by the expanded network, including some Critically Endangered species. Moreover, many species occurring in protected areas are still threatened, indicating that threatening processes persist even in reserves. Definitive implementation of the new protected areas combined with local community engagement are essential for the survival of Madagascar’s palms.


Trends in Ecology and Evolution | 2017

Plant States and Fates: Response to Pimm and Raven

Eimear Nic Lughadha; Steven P. Bachman; Rafaël Govaerts

Pimm and Raven [1] shine a welcome spotlight on the 2016 State of the World’s Plants (SOWP) report [2], an initiative by the Royal Botanic Gardens, Kew, with many collaborators. Pimm and Raven aim to examine numbers presented in the report, explain their origins, and consider what is left unsaid. They focus on SOWP assertions that ‘391,000 vascular plant species are known to science’ and ‘21% currently threatened with extinction’. As coauthors of the relevant SOWP chapters we offer additional detail on these aspects to clarify potential misunderstandings reflected in the explanations of our methods by Pimm and Raven.

Collaboration


Dive into the Steven P. Bachman's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Neil Brummitt

American Museum of Natural History

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David A. Keith

University of New South Wales

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge