Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sujay B. Desai is active.

Publication


Featured researches published by Sujay B. Desai.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Strong interlayer coupling in van der Waals heterostructures built from single-layer chalcogenides

Hui Fang; Corsin Battaglia; Carlo Carraro; Slavomír Nemšák; Burak Ozdol; Jeong Seuk Kang; Hans A. Bechtel; Sujay B. Desai; Florian Kronast; Ahmet A. Ünal; Giuseppina Conti; Catherine Conlon; Gunnar K. Palsson; Michael C. Martin; Andrew M. Minor; C. S. Fadley; Eli Yablonovitch; Roya Maboudian; Ali Javey

Significance A new class of heterostructures consisting of layered transition metal dichalcogenide components can be designed and built by van der Waals (vdW) stacking of individual monolayers into functional multilayer structures. Nonetheless, the optoelectronic properties of this new type of vdW heterostructure are unknown. Here, we investigate artificial semiconductor heterostructures built from single-layer WSe2 and MoS2. We observe spatially direct absorption but spatially indirect emission in this heterostructure, with strong interlayer coupling of charge carriers. The coupling at the hetero-interface can be readily tuned by inserting hexagonal BN dielectric layers into the vdW gap. The generic nature of this interlayer coupling is expected to yield a new family of semiconductor heterostructures having tunable optoelectronic properties through customized composite layers. Semiconductor heterostructures are the fundamental platform for many important device applications such as lasers, light-emitting diodes, solar cells, and high-electron-mobility transistors. Analogous to traditional heterostructures, layered transition metal dichalcogenide heterostructures can be designed and built by assembling individual single layers into functional multilayer structures, but in principle with atomically sharp interfaces, no interdiffusion of atoms, digitally controlled layered components, and no lattice parameter constraints. Nonetheless, the optoelectronic behavior of this new type of van der Waals (vdW) semiconductor heterostructure is unknown at the single-layer limit. Specifically, it is experimentally unknown whether the optical transitions will be spatially direct or indirect in such hetero-bilayers. Here, we investigate artificial semiconductor heterostructures built from single-layer WSe2 and MoS2. We observe a large Stokes-like shift of ∼100 meV between the photoluminescence peak and the lowest absorption peak that is consistent with a type II band alignment having spatially direct absorption but spatially indirect emission. Notably, the photoluminescence intensity of this spatially indirect transition is strong, suggesting strong interlayer coupling of charge carriers. This coupling at the hetero-interface can be readily tuned by inserting dielectric layers into the vdW gap, consisting of hexagonal BN. Consequently, the generic nature of this interlayer coupling provides a new degree of freedom in band engineering and is expected to yield a new family of semiconductor heterostructures having tunable optoelectronic properties with customized composite layers.


ACS Nano | 2014

Field-Effect Transistors Built from All Two-Dimensional Material Components

Tania Roy; Mahmut Tosun; Jeong Seuk Kang; Angada B. Sachid; Sujay B. Desai; Mark Hettick; Chenming Hu; Ali Javey

We demonstrate field-effect transistors using heterogeneously stacked two-dimensional materials for all of the components, including the semiconductor, insulator, and metal layers. Specifically, MoS2 is used as the active channel material, hexagonal-BN as the top-gate dielectric, and graphene as the source/drain and the top-gate contacts. This transistor exhibits n-type behavior with an ON/OFF current ratio of >10(6), and an electron mobility of ∼33 cm(2)/V·s. Uniquely, the mobility does not degrade at high gate voltages, presenting an important advantage over conventional Si transistors where enhanced surface roughness scattering severely reduces carrier mobilities at high gate-fields. A WSe2-MoS2 diode with graphene contacts is also demonstrated. The diode exhibits excellent rectification behavior and a low reverse bias current, suggesting high quality interfaces between the stacked layers. In this work, all interfaces are based on van der Waals bonding, presenting a unique device architecture where crystalline, layered materials with atomically uniform thicknesses are stacked on demand, without the lattice parameter constraints. The results demonstrate the promise of using an all-layered material system for future electronic applications.


Science | 2016

MoS2 transistors with 1-nanometer gate lengths

Sujay B. Desai; Surabhi R. Madhvapathy; Angada B. Sachid; Juan Pablo Llinas; Qingxiao Wang; Geun Ho Ahn; Gregory Pitner; Moon J. Kim; Jeffrey Bokor; Chenming Hu; H.-S. Philip Wong; Ali Javey

A flatter route to shorter channels High-performance silicon transistors can have gate lengths as short as 5 nm before source-drain tunneling and loss of electrostatic control lead to unacceptable leakage current when the device is off. Desai et al. explored the use of MoS2 as a channel material, given that its electronic properties as thin layers should limit such leakage. A transistor with a 1-nm physical gate was constructed with a MoS2 bilayer channel and a single-walled carbon nanotube gate electrode. Excellent switching characteristics and an on-off state current ratio of ∼106 were observed. Science, this issue p. 99 Molybdenum disulfide transistors with carbon nanotube gate electrodes have channel lengths below the silicon scaling limit. Scaling of silicon (Si) transistors is predicted to fail below 5-nanometer (nm) gate lengths because of severe short channel effects. As an alternative to Si, certain layered semiconductors are attractive for their atomically uniform thickness down to a monolayer, lower dielectric constants, larger band gaps, and heavier carrier effective mass. Here, we demonstrate molybdenum disulfide (MoS2) transistors with a 1-nm physical gate length using a single-walled carbon nanotube as the gate electrode. These ultrashort devices exhibit excellent switching characteristics with near ideal subthreshold swing of ~65 millivolts per decade and an On/Off current ratio of ~106. Simulations show an effective channel length of ~3.9 nm in the Off state and ~1 nm in the On state.


Nano Letters | 2014

Strain-Induced Indirect to Direct Bandgap Transition in Multilayer WSe2

Sujay B. Desai; Gyungseon Seol; Jeong Seuk Kang; Hui Fang; Corsin Battaglia; Rehan Kapadia; Joel W. Ager; Jing Guo; Ali Javey

Transition metal dichalcogenides, such as MoS2 and WSe2, have recently gained tremendous interest for electronic and optoelectronic applications. MoS2 and WSe2 monolayers are direct bandgap and show bright photoluminescence (PL), whereas multilayers exhibit much weaker PL due to their indirect optical bandgap. This presents an obstacle for a number of device applications involving light harvesting or detection where thicker films with direct optical bandgap are desired. Here, we experimentally demonstrate a drastic enhancement in PL intensity for multilayer WSe2 (2-4 layers) under uniaxial tensile strain of up to 2%. Specifically, the PL intensity of bilayer WSe2 is amplified by ∼ 35× , making it comparable to that of an unstrained WSe2 monolayer. This drastic PL enhancement is attributed to an indirect to direct bandgap transition for strained bilayer WSe2, as confirmed by density functional theory (DFT) calculations. Notably, in contrast to MoS2 multilayers, the energy difference between the direct and indirect bandgaps of WSe2 multilayers is small, thus allowing for bandgap crossover at experimentally feasible strain values. Our results present an important advance toward controlling the band structure and optoelectronic properties of few-layer WSe2 via strain engineering, with important implications for practical device applications.


Advanced Materials | 2016

Gold-Mediated Exfoliation of Ultralarge Optoelectronically-Perfect Monolayers

Sujay B. Desai; Surabhi R. Madhvapathy; Matin Amani; Daisuke Kiriya; Mark Hettick; Mahmut Tosun; Yuzhi Zhou; Madan Dubey; Joel W. Ager; D. C. Chrzan; Ali Javey

Gold-mediated exfoliation of ultralarge optoelectronically perfect monolayers with lateral dimensions up to ≈500 μm is reported. Electrical, optical, and X-ray photo-electron spectroscopy characterization show that the quality of the gold-exfoliated flakes is similar to that of tape-exfoliated flakes. Large-area flakes allow manufacturing of large-area mono-layer transition metal dichalcogenide electronics.


Advanced Materials | 2016

Monolithic 3D CMOS Using Layered Semiconductors

Angada B. Sachid; Mahmut Tosun; Sujay B. Desai; Ching-Yi Hsu; Der-Hsien Lien; Surabhi R. Madhvapathy; Yu-Ze Chen; Mark Hettick; Jeong Seuk Kang; Yuping Zeng; Jr-Hau He; Edward Yi Chang; Yu-Lun Chueh; Ali Javey; Chenming Hu

Monolithic 3D integrated circuits using transition metal dichalcogenide materials and low-temperature processing are reported. A variety of digital and analog circuits are implemented on two sequentially integrated layers of devices. Inverter circuit operation at an ultralow supply voltage of 150 mV is achieved, paving the way to high-density, ultralow-voltage, and ultralow-power applications.


Scientific Reports | 2015

MoS2 Heterojunctions by Thickness Modulation

Mahmut Tosun; Deyi Fu; Sujay B. Desai; Changhyun Ko; Jeong Seuk Kang; Der Hsien Lien; Mohammad Najmzadeh; Sefaattin Tongay; J. Wu; Ali Javey

In this work, we report lateral heterojunction formation in as-exfoliated MoS2 flakes by thickness modulation. Kelvin probe force microscopy is used to map the surface potential at the monolayer-multilayer heterojunction, and consequently the conduction band offset is extracted. Scanning photocurrent microscopy is performed to investigate the spatial photocurrent response along the length of the device including the source and the drain contacts as well as the monolayer-multilayer junction. The peak photocurrent is measured at the monolayer-multilayer interface, which is attributed to the formation of a type-I heterojunction. The work presents experimental and theoretical understanding of the band alignment and photoresponse of thickness modulated MoS2 junctions with important implications for exploring novel optoelectronic devices.


Nature Communications | 2016

Direct growth of single-crystalline III–V semiconductors on amorphous substrates

Kevin C. Chen; Rehan Kapadia; Audrey Harker; Sujay B. Desai; Jeong Seuk Kang; Steven Chuang; Mahmut Tosun; Carolin M. Sutter-Fella; Michael Tsang; Yuping Zeng; Daisuke Kiriya; Jubin Hazra; Surabhi R. Madhvapathy; Mark Hettick; Yu-Ze Chen; James P. Mastandrea; Matin Amani; Stefano Cabrini; Yu-Lun Chueh; Joel W. Ager; D. C. Chrzan; Ali Javey

The III–V compound semiconductors exhibit superb electronic and optoelectronic properties. Traditionally, closely lattice-matched epitaxial substrates have been required for the growth of high-quality single-crystal III–V thin films and patterned microstructures. To remove this materials constraint, here we introduce a growth mode that enables direct writing of single-crystalline III–Vs on amorphous substrates, thus further expanding their utility for various applications. The process utilizes templated liquid-phase crystal growth that results in user-tunable, patterned micro and nanostructures of single-crystalline III–Vs of up to tens of micrometres in lateral dimensions. InP is chosen as a model material system owing to its technological importance. The patterned InP single crystals are configured as high-performance transistors and photodetectors directly on amorphous SiO2 growth substrates, with performance matching state-of-the-art epitaxially grown devices. The work presents an important advance towards universal integration of III–Vs on application-specific substrates by direct growth.


Nature Communications | 2018

Large-area and bright pulsed electroluminescence in monolayer semiconductors

Der-Hsien Lien; Matin Amani; Sujay B. Desai; Geun Ho Ahn; Kevin Han; Jr-Hau He; Joel W. Ager; Ming C. Wu; Ali Javey

Transition-metal dichalcogenide monolayers have naturally terminated surfaces and can exhibit a near-unity photoluminescence quantum yield in the presence of suitable defect passivation. To date, steady-state monolayer light-emitting devices suffer from Schottky contacts or require complex heterostructures. We demonstrate a transient-mode electroluminescent device based on transition-metal dichalcogenide monolayers (MoS2, WS2, MoSe2, and WSe2) to overcome these problems. Electroluminescence from this dopant-free two-terminal device is obtained by applying an AC voltage between the gate and the semiconductor. Notably, the electroluminescence intensity is weakly dependent on the Schottky barrier height or polarity of the contact. We fabricate a monolayer seven-segment display and achieve the first transparent and bright millimeter-scale light-emitting monolayer semiconductor device.Atomically thin monolayers with high photoluminescence quantum yield are promising for optoelectronic and lighting applications. Here, the authors fabricate a transient-mode electroluminescent device to bypass the requirement of ohmic contacts for electrons and holes, and observe millimetre-scale light emission from a transparent 2D display.


international electron devices meeting | 2015

2D layered materials: From materials properties to device applications

Peida Zhao; Sujay B. Desai; Mahmut Tosun; Tania Roy; Hui Fang; Angada B. Sachid; Matin Amani; Chenming Hu; Ali Javey

An overview of material properties and the current state of electronic devices based on 2D layered materials is presented. Atomic scale smoothness, varying band alignment and sizeable bandgaps in the single layer limit make this class of materials very interesting for optoelectronic applications. Scaling effects, doping techniques, contacts and strain engineering of 2D materials are discussed. In addition, important advancements in 2D material electronic devices, for example the all-2D field effect transistor (FET), heterojunction devices, and tunnel diode are highlighted.

Collaboration


Dive into the Sujay B. Desai's collaboration.

Top Co-Authors

Avatar

Ali Javey

University of California

View shared research outputs
Top Co-Authors

Avatar

Mahmut Tosun

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chenming Hu

University of California

View shared research outputs
Top Co-Authors

Avatar

Matin Amani

University of California

View shared research outputs
Top Co-Authors

Avatar

Der-Hsien Lien

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mark Hettick

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge