Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jeong Seuk Kang is active.

Publication


Featured researches published by Jeong Seuk Kang.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Strong interlayer coupling in van der Waals heterostructures built from single-layer chalcogenides

Hui Fang; Corsin Battaglia; Carlo Carraro; Slavomír Nemšák; Burak Ozdol; Jeong Seuk Kang; Hans A. Bechtel; Sujay B. Desai; Florian Kronast; Ahmet A. Ünal; Giuseppina Conti; Catherine Conlon; Gunnar K. Palsson; Michael C. Martin; Andrew M. Minor; C. S. Fadley; Eli Yablonovitch; Roya Maboudian; Ali Javey

Significance A new class of heterostructures consisting of layered transition metal dichalcogenide components can be designed and built by van der Waals (vdW) stacking of individual monolayers into functional multilayer structures. Nonetheless, the optoelectronic properties of this new type of vdW heterostructure are unknown. Here, we investigate artificial semiconductor heterostructures built from single-layer WSe2 and MoS2. We observe spatially direct absorption but spatially indirect emission in this heterostructure, with strong interlayer coupling of charge carriers. The coupling at the hetero-interface can be readily tuned by inserting hexagonal BN dielectric layers into the vdW gap. The generic nature of this interlayer coupling is expected to yield a new family of semiconductor heterostructures having tunable optoelectronic properties through customized composite layers. Semiconductor heterostructures are the fundamental platform for many important device applications such as lasers, light-emitting diodes, solar cells, and high-electron-mobility transistors. Analogous to traditional heterostructures, layered transition metal dichalcogenide heterostructures can be designed and built by assembling individual single layers into functional multilayer structures, but in principle with atomically sharp interfaces, no interdiffusion of atoms, digitally controlled layered components, and no lattice parameter constraints. Nonetheless, the optoelectronic behavior of this new type of van der Waals (vdW) semiconductor heterostructure is unknown at the single-layer limit. Specifically, it is experimentally unknown whether the optical transitions will be spatially direct or indirect in such hetero-bilayers. Here, we investigate artificial semiconductor heterostructures built from single-layer WSe2 and MoS2. We observe a large Stokes-like shift of ∼100 meV between the photoluminescence peak and the lowest absorption peak that is consistent with a type II band alignment having spatially direct absorption but spatially indirect emission. Notably, the photoluminescence intensity of this spatially indirect transition is strong, suggesting strong interlayer coupling of charge carriers. This coupling at the hetero-interface can be readily tuned by inserting dielectric layers into the vdW gap, consisting of hexagonal BN. Consequently, the generic nature of this interlayer coupling provides a new degree of freedom in band engineering and is expected to yield a new family of semiconductor heterostructures having tunable optoelectronic properties with customized composite layers.


Scientific Reports | 2013

Defects activated photoluminescence in two-dimensional semiconductors: interplay between bound, charged, and free excitons

Sefaattin Tongay; Joonki Suh; Can Ataca; Wen Fan; Alexander V. Luce; Jeong Seuk Kang; Jonathan Liu; Changhyun Ko; Rajamani Raghunathanan; Jian Zhou; Frank Ogletree; Jingbo Li; Jeffrey C. Grossman; J. Wu

Point defects in semiconductors can trap free charge carriers and localize excitons. The interaction between these defects and charge carriers becomes stronger at reduced dimensionalities, and is expected to greatly influence physical properties of the hosting material. We investigated effects of anion vacancies in monolayer transition metal dichalcogenides as two-dimensional (2D) semiconductors where the vacancies density is controlled by α-particle irradiation or thermal-annealing. We found a new, sub-bandgap emission peak as well as increase in overall photoluminescence intensity as a result of the vacancy generation. Interestingly, these effects are absent when measured in vacuum. We conclude that in opposite to conventional wisdom, optical quality at room temperature cannot be used as criteria to assess crystal quality of the 2D semiconductors. Our results not only shed light on defect and exciton physics of 2D semiconductors, but also offer a new route toward tailoring optical properties of 2D semiconductors by defect engineering.


ACS Nano | 2014

Field-Effect Transistors Built from All Two-Dimensional Material Components

Tania Roy; Mahmut Tosun; Jeong Seuk Kang; Angada B. Sachid; Sujay B. Desai; Mark Hettick; Chenming Hu; Ali Javey

We demonstrate field-effect transistors using heterogeneously stacked two-dimensional materials for all of the components, including the semiconductor, insulator, and metal layers. Specifically, MoS2 is used as the active channel material, hexagonal-BN as the top-gate dielectric, and graphene as the source/drain and the top-gate contacts. This transistor exhibits n-type behavior with an ON/OFF current ratio of >10(6), and an electron mobility of ∼33 cm(2)/V·s. Uniquely, the mobility does not degrade at high gate voltages, presenting an important advantage over conventional Si transistors where enhanced surface roughness scattering severely reduces carrier mobilities at high gate-fields. A WSe2-MoS2 diode with graphene contacts is also demonstrated. The diode exhibits excellent rectification behavior and a low reverse bias current, suggesting high quality interfaces between the stacked layers. In this work, all interfaces are based on van der Waals bonding, presenting a unique device architecture where crystalline, layered materials with atomically uniform thicknesses are stacked on demand, without the lattice parameter constraints. The results demonstrate the promise of using an all-layered material system for future electronic applications.


Journal of the American Chemical Society | 2014

Air-Stable Surface Charge Transfer Doping of MoS2 by Benzyl Viologen

Daisuke Kiriya; Mahmut Tosun; Peida Zhao; Jeong Seuk Kang; Ali Javey

Air-stable doping of transition metal dichalcogenides is of fundamental importance to enable a wide range of optoelectronic and electronic devices while exploring their basic material properties. Here we demonstrate the use of benzyl viologen (BV), which has one of the highest reduction potentials of all electron-donor organic compounds, as a surface charge transfer donor for MoS2 flakes. The n-doped samples exhibit excellent stability in both ambient air and vacuum. Notably, we obtained a high electron sheet density of ~1.2 × 10(13) cm(-2), which corresponds to the degenerate doping limit for MoS2. The BV dopant molecules can be reversibly removed by immersion in toluene, providing the ability to control the carrier sheet density as well as selective removal of surface dopants on demand. By BV doping of MoS2 at the metal junctions, the contact resistances are shown to be reduced by a factor of >3. As a proof of concept, top-gated field-effect transistors were fabricated with BV-doped n(+) source/drain contacts self-aligned with respect to the top gate. The device architecture, resembling that of the conventional Si transistors, exhibited excellent switching characteristics with a subthreshold swing of ~77 mV/decade.


Nano Letters | 2014

Strain-Induced Indirect to Direct Bandgap Transition in Multilayer WSe2

Sujay B. Desai; Gyungseon Seol; Jeong Seuk Kang; Hui Fang; Corsin Battaglia; Rehan Kapadia; Joel W. Ager; Jing Guo; Ali Javey

Transition metal dichalcogenides, such as MoS2 and WSe2, have recently gained tremendous interest for electronic and optoelectronic applications. MoS2 and WSe2 monolayers are direct bandgap and show bright photoluminescence (PL), whereas multilayers exhibit much weaker PL due to their indirect optical bandgap. This presents an obstacle for a number of device applications involving light harvesting or detection where thicker films with direct optical bandgap are desired. Here, we experimentally demonstrate a drastic enhancement in PL intensity for multilayer WSe2 (2-4 layers) under uniaxial tensile strain of up to 2%. Specifically, the PL intensity of bilayer WSe2 is amplified by ∼ 35× , making it comparable to that of an unstrained WSe2 monolayer. This drastic PL enhancement is attributed to an indirect to direct bandgap transition for strained bilayer WSe2, as confirmed by density functional theory (DFT) calculations. Notably, in contrast to MoS2 multilayers, the energy difference between the direct and indirect bandgaps of WSe2 multilayers is small, thus allowing for bandgap crossover at experimentally feasible strain values. Our results present an important advance toward controlling the band structure and optoelectronic properties of few-layer WSe2 via strain engineering, with important implications for practical device applications.


Nano Letters | 2015

Engineering Light Outcoupling in 2D Materials

Der-Hsien Lien; Jeong Seuk Kang; Matin Amani; Kevin P. Chen; Mahmut Tosun; Hsin-Ping Wang; Tania Roy; Michael Eggleston; Ming C. Wu; Madan Dubey; Si-Chen Lee; Jr-Hau He; Ali Javey

When light is incident on 2D transition metal dichalcogenides (TMDCs), it engages in multiple reflections within underlying substrates, producing interferences that lead to enhancement or attenuation of the incoming and outgoing strength of light. Here, we report a simple method to engineer the light outcoupling in semiconducting TMDCs by modulating their dielectric surroundings. We show that by modulating the thicknesses of underlying substrates and capping layers, the interference caused by substrate can significantly enhance the light absorption and emission of WSe2, resulting in a ∼11 times increase in Raman signal and a ∼30 times increase in the photoluminescence (PL) intensity of WSe2. On the basis of the interference model, we also propose a strategy to control the photonic and optoelectronic properties of thin-layer WSe2. This work demonstrates the utilization of outcoupling engineering in 2D materials and offers a new route toward the realization of novel optoelectronic devices, such as 2D LEDs and solar cells.


Advanced Materials | 2016

Monolithic 3D CMOS Using Layered Semiconductors

Angada B. Sachid; Mahmut Tosun; Sujay B. Desai; Ching-Yi Hsu; Der-Hsien Lien; Surabhi R. Madhvapathy; Yu-Ze Chen; Mark Hettick; Jeong Seuk Kang; Yuping Zeng; Jr-Hau He; Edward Yi Chang; Yu-Lun Chueh; Ali Javey; Chenming Hu

Monolithic 3D integrated circuits using transition metal dichalcogenide materials and low-temperature processing are reported. A variety of digital and analog circuits are implemented on two sequentially integrated layers of devices. Inverter circuit operation at an ultralow supply voltage of 150 mV is achieved, paving the way to high-density, ultralow-voltage, and ultralow-power applications.


Scientific Reports | 2015

MoS2 Heterojunctions by Thickness Modulation

Mahmut Tosun; Deyi Fu; Sujay B. Desai; Changhyun Ko; Jeong Seuk Kang; Der Hsien Lien; Mohammad Najmzadeh; Sefaattin Tongay; J. Wu; Ali Javey

In this work, we report lateral heterojunction formation in as-exfoliated MoS2 flakes by thickness modulation. Kelvin probe force microscopy is used to map the surface potential at the monolayer-multilayer heterojunction, and consequently the conduction band offset is extracted. Scanning photocurrent microscopy is performed to investigate the spatial photocurrent response along the length of the device including the source and the drain contacts as well as the monolayer-multilayer junction. The peak photocurrent is measured at the monolayer-multilayer interface, which is attributed to the formation of a type-I heterojunction. The work presents experimental and theoretical understanding of the band alignment and photoresponse of thickness modulated MoS2 junctions with important implications for exploring novel optoelectronic devices.


Nature Communications | 2016

Direct growth of single-crystalline III–V semiconductors on amorphous substrates

Kevin C. Chen; Rehan Kapadia; Audrey Harker; Sujay B. Desai; Jeong Seuk Kang; Steven Chuang; Mahmut Tosun; Carolin M. Sutter-Fella; Michael Tsang; Yuping Zeng; Daisuke Kiriya; Jubin Hazra; Surabhi R. Madhvapathy; Mark Hettick; Yu-Ze Chen; James P. Mastandrea; Matin Amani; Stefano Cabrini; Yu-Lun Chueh; Joel W. Ager; D. C. Chrzan; Ali Javey

The III–V compound semiconductors exhibit superb electronic and optoelectronic properties. Traditionally, closely lattice-matched epitaxial substrates have been required for the growth of high-quality single-crystal III–V thin films and patterned microstructures. To remove this materials constraint, here we introduce a growth mode that enables direct writing of single-crystalline III–Vs on amorphous substrates, thus further expanding their utility for various applications. The process utilizes templated liquid-phase crystal growth that results in user-tunable, patterned micro and nanostructures of single-crystalline III–Vs of up to tens of micrometres in lateral dimensions. InP is chosen as a model material system owing to its technological importance. The patterned InP single crystals are configured as high-performance transistors and photodetectors directly on amorphous SiO2 growth substrates, with performance matching state-of-the-art epitaxially grown devices. The work presents an important advance towards universal integration of III–Vs on application-specific substrates by direct growth.


Nanotechnology | 2015

Magnetoresistance oscillations in topological insulator Bi2Te3 nanoscale antidot arrays

Min Song; Jiun-Haw Chu; Jian Zhou; Sefaattin Tongay; Kai Liu; Joonki Suh; Henry Chen; Jeong Seuk Kang; Xuecheng Zou; Long You

Nanoscale antidot arrays were fabricated on a single-crystal microflake of topological insulator Bi2Te3. The introduction of antidot arrays significantly increased the resistance of the microflake, yet the temperature dependence of the resistance remains metallic. We observed that small oscillations that are periodic in magnetic field B appeared on top of the weak anti-localization magnetoresistance. Since the electron coherence length at low temperature becomes comparable to the feature size in our device, we argued that the magnetoresistance oscillations are the manifestation of quantum interference induced by the nanostructure. Our work demonstrates that the transport of topological insulators could indeed be controlled by artificially created nanostructures, and paves the way for future technological applications of this class of materials.

Collaboration


Dive into the Jeong Seuk Kang's collaboration.

Top Co-Authors

Avatar

Ali Javey

University of California

View shared research outputs
Top Co-Authors

Avatar

Mahmut Tosun

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Sujay B. Desai

University of California

View shared research outputs
Top Co-Authors

Avatar

Mark Hettick

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chenming Hu

University of California

View shared research outputs
Top Co-Authors

Avatar

Der-Hsien Lien

University of California

View shared research outputs
Top Co-Authors

Avatar

J. Wu

University of California

View shared research outputs
Top Co-Authors

Avatar

Jian Zhou

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge