Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sylvain Blaize is active.

Publication


Featured researches published by Sylvain Blaize.


Nature Photonics | 2007

Wavelength-scale stationary-wave integrated Fourier-transform spectrometry

Etienne Le Coarer; Sylvain Blaize; Pierre Benech; Ilan Stefanon; Alain Morand; Gilles Lerondel; Gregory Leblond; P. Kern; Jean Marc Fedeli; Pascal Royer

Spectrometry is a general physical-analysis approach for investigating light-matter interactions. However, the complex designs of existing spectrometers render them resistant to simplification and miniaturization, both of which are vital for applications in micro- and nanotechnology and which are now undergoing intensive research. Stationary-wave integrated Fourier-transform spectrometry (SWIFTS)-an approach based on direct intensity detection of a standing wave resulting from either reflection (as in the principle of colour photography by Gabriel Lippmann) or counterpropagative interference phenomenon-is expected to be able to overcome this drawback. Here, we present a SWIFTS-based spectrometer relying on an original optical near-field detection method in which optical nanoprobes are used to sample directly the evanescent standing wave in the waveguide. Combined with integrated optics, we report a way of reducing the volume of the spectrometer to a few hundreds of cubic wavelengths. This is the first attempt, using SWIFTS, to produce a very small integrated one-dimensional spectrometer suitable for applications where microspectrometers are essential.


Nano Letters | 2010

Efficient Directional Coupling between Silicon and Copper Plasmonic Nanoslot Waveguides: toward Metal−Oxide−Silicon Nanophotonics

Cécile Delacour; Sylvain Blaize; Philippe Grosse; Jean Marc Fedeli; Aurélien Bruyant; Rafael Salas-Montiel; Gilles Lerondel; A. Chelnokov

Coupling plasmonics and silicon photonics is the best way to bridge the size gap between macroscopic optics and nanodevices in general and especially nanoelectronic devices. We report on the realization of key blocks for future plasmonic planar integrated optics, nano-optical couplers, and nanoslot waveguides that are compatible both with the silicon photonics and the CMOS microelectronics. Copper-based devices provide for very efficient optical coupling, unexpectedly low propagation losses and a broadband sub-50 nm optical confinement. The fabrication in a standard frontline microelectronic facilities hints broad possibilities of hybrid opto-electronic very large scale integration.


Nano Letters | 2012

Giant coupling effect between metal nanoparticle chain and optical waveguide.

Mickaël Février; Philippe Gogol; Abdelhanin Aassime; Robert Megy; Cécile Delacour; A. Chelnokov; Aniello Apuzzo; Sylvain Blaize; J.-M. Lourtioz; B. Dagens

We demonstrate that the optical energy carried by a TE dielectric waveguide mode can be totally transferred into a transverse plasmon mode of a coupled metal nanoparticle chain. Experiments are performed at 1.5 μm. Mode coupling occurs through the evanescent field of the dielectric waveguide mode. Giant coupling effects are evidenced from record coupling lengths as short as ~560 nm. This result opens the way to nanometer scale devices based on localized plasmons in photonic integrated circuits.


Optics Express | 2011

Implementation of PT symmetric devices using plasmonics: principle and applications

Henri Benisty; Aloyse Degiron; Anatole Lupu; André de Lustrac; Sébastien Chénais; Sébastien Forget; Mondher Besbes; Grégory Barbillon; Aurélien Bruyant; Sylvain Blaize; Gilles Lerondel

The so-called PT symmetric devices, which feature ε((-x)) = ε((x))* associated with parity-time symmetry, incorporate both gain and loss and can present a singular eigenvalue behaviour around a critical transition point. The scheme, typically based on co-directional coupled waveguides, is here transposed to the case of variable gain on one arm with fixed losses on the other arm. In this configuration, the scheme exploits the full potential of plasmonics by making a beneficial use of their losses to attain a critical regime that makes switching possible with much lowered gain excursions. Practical implementations are discussed based on existing attempts to elaborate coupled waveguide in plasmonics, and based also on the recently proposed hybrid plasmonics waveguide structure with a small low-index gap, the PIROW (Plasmonic Inverse-Rib Optical Waveguide).


Journal of The Optical Society of America B-optical Physics | 2006

Apertureless scanning near-field optical microscopy: a comparison between homodyne and heterodyne approaches

Lewis Mortimer Gomez; Renaud Bachelot; Alexandre Bouhelier; Gary P. Wiederrecht; Shih-Hui Chang; Stephen K. Gray; Feng Hua; Seokwoo Jeon; John A. Rogers; Miguel E. Castro; Sylvain Blaize; Ilan Stefanon; Gilles Lerondel; Pascal Royer

In coherent homodyne apertureless scanning near-field optical microscopy (ASNOM) the background field cannot be fully suppressed because of the interference between the different collected fields, making the images difficult to interpret. We show that implementing the heterodyne version of ASNOM allows one to overcome this issue. We present a comparison between homodyne and heterodyne ASNOM through near-field analysis of gold nanowells, integrated waveguides, and a single evanescent wave generated by total internal reflection. The heterodyne approach allows for the control of the interferometric effect with the background light. In particular, the undesirable background is shown to be replaced by a controlled reference field. As a result, near-field information undetectable by a homodyne ASNOM is extracted by use of the heterodyne approach. Additionally, it is shown that field amplitude and field phase can be detected separately.


Optics Express | 2005

Heterodyne detection of guided waves using a scattering-type Scanning Near-Field Optical Microscope.

Ilan Stefanon; Sylvain Blaize; Aurélien Bruyant; Sébastien Aubert; Gilles Lerondel; Renaud Bachelot; Pascal Royer

An inherent problem to the study of waveguides with strong propagation losses by Scattering-type Scanning Near field Optical Microscopy is the coherent optical background field which disrupts strongly the weak detected near-field signal. We present a technique of heterodyne detection allowing us to overcome this difficulty while amplifying the near field signal. As illustrated in the case of a highly confined SOI structure, this technique, besides the amplitude, provides the local phase variation of the guided field. The knowledge of the complex field cartography leads to the modal analysis of the propagating radiation.


Review of Scientific Instruments | 2007

Enlarged atomic force microscopy scanning scope: Novel sample-holder device with millimeter range

A. Sinno; P. Ruaux; L. Chassagne; Suat Topcu; Yasser Alayli; Gilles Lerondel; Sylvain Blaize; Aurélien Bruyant; Pascal Royer

We propose a homemade sample-holder unit used for nanopositionning in two dimensions with a millimeter traveling range. For each displacement axis, the system includes a long range traveling stage and a piezoelectric actuator for accurate positioning. Specific electronics is integrated according to metrological considerations, enhancing the repeatability performances. The aim of this work is to demonstrate that near-field microscopy at the scale of a chip is possible. For this we chose to characterize highly integrated optical structures. For this purpose, the sample holder was integrated into an atomic force microscope. A millimeter scale topographical image demonstrates the overall performances of the combined system.


Nano Letters | 2015

On-chip hybrid photonic-plasmonic light concentrator for nanofocusing in an integrated silicon photonics platform.

Ye Luo; Maysamreza Chamanzar; Aniello Apuzzo; Rafael Salas-Montiel; Kim Ngoc Nguyen; Sylvain Blaize; Ali Adibi

The enhancement and confinement of electromagnetic radiation to nanometer scale have improved the performances and decreased the dimensions of optical sources and detectors for several applications including spectroscopy, medical applications, and quantum information. Realization of on-chip nanofocusing devices compatible with silicon photonics platform adds a key functionality and provides opportunities for sensing, trapping, on-chip signal processing, and communications. Here, we discuss the design, fabrication, and experimental demonstration of light nanofocusing in a hybrid plasmonic-photonic nanotaper structure. We discuss the physical mechanisms behind the operation of this device, the coupling mechanisms, and how to engineer the energy transfer from a propagating guided mode to a trapped plasmonic mode at the apex of the plasmonic nanotaper with minimal radiation loss. Optical near-field measurements and Fourier modal analysis carried out using a near-field scanning optical microscope (NSOM) show a tight nanofocusing of light in this structure to an extremely small spot of 0.00563(λ/(2n(rmax)))(3) confined in 3D and an exquisite power input conversion of 92%. Our experiments also verify the mode selectivity of the device (low transmission of a TM-like input mode and high transmission of a TE-like input mode). A large field concentration factor (FCF) of about 4.9 is estimated from our NSOM measurement with a radius of curvature of about 20 nm at the apex of the nanotaper. The agreement between our theory and experimental results reveals helpful insights about the operation mechanism of the device, the interplay of the modes, and the gradual power transfer to the nanotaper apex.


Journal of The Optical Society of America B-optical Physics | 2003

Analysis of the interferometric effect of the background light in apertureless scanning near-field optical microscopy

Sébastien Aubert; Aurélien Bruyant; Sylvain Blaize; Renaud Bachelot; Gilles Lerondel; S. Hudlet; Pascal Royer

We investigate in detail the interferometric nature of the signal delivered by an apertureless scanning near-field optical microscope (SNOM). This nature is first brought to the fore by near-field images of an integrated waveguide. The detection process of an evanescent wave generated by total internal reflection is then studied by both lateral near-field scans and signal detection as a function of the tip-to-sample distance. This study permits interpretation of fringe patterns appearing in apertureless SNOM images and provides important information about the nature of the signal. In particular, both experimental data and simple calculations show that, because of interference with background light coming from the sample, the detected signal can describe the complex field amplitude, or the field intensity, or a subtle mix of both, depending on the tip environment and the tip position.


Nano Letters | 2013

Observation of Near-Field Dipolar Interactions Involved in a Metal Nanoparticle Chain Waveguide

Aniello Apuzzo; Mickaël Février; Rafael Salas-Montiel; Aurélien Bruyant; A. Chelnokov; Gilles Lerondel; Béatrice Dagens; Sylvain Blaize

We present near-field measurements of transverse plasmonic wave propagation in a chain of gold elliptical nanocylinders fed by a silicon refractive waveguide at optical telecommunication wavelengths. Eigenmode amplitude and phase imaging by apertureless scanning near-field optical microscopy allows us to measure the local out-of-plane electric field components and to reveal the exact nature of the excited localized surface plasmon resonances. Furthermore, the coupling mechanism between subsequent metal nanoparticles along the chain is experimentally analyzed by spatial Fourier transformation on the complex near-field cartography, giving a direct experimental proof of plasmonic Bloch mode propagation along array of localized surface plasmons. Our work demonstrates the possibility to characterize multielement plasmonic nanostructures coupled to a photonic waveguide with a spatial resolution of less than 30 nm. This experimental work constitutes a prerequisite for the development of integrated nanophotonic devices.

Collaboration


Dive into the Sylvain Blaize's collaboration.

Top Co-Authors

Avatar

Aurélien Bruyant

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Gilles Lerondel

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Pascal Royer

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Rafael Salas-Montiel

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Renaud Bachelot

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Aniello Apuzzo

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Gilles Lerondel

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Yassine Hadjar

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Sébastien Aubert

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

A. Chelnokov

Centre national de la recherche scientifique

View shared research outputs
Researchain Logo
Decentralizing Knowledge