Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where T. Page is active.

Publication


Featured researches published by T. Page.


IEEE Transactions on Applied Superconductivity | 2001

Status of the LHC inner triplet quadrupole program at Fermilab

N. Andreev; T. Arkan; P. Bauer; R. Bossert; J. Brandt; J. Carson; S. Caspi; D.R. Chichili; L. Chiesa; Christine Darve; J. DiMarco; S. Feher; A. Ghosh; H. Glass; Y. Huang; J. Kerby; M.J. Lamm; A.A. Markarov; A.D. McInturff; T. H. Nicol; A. Nobrega; I. Novitski; T. Ogitsu; D. Orris; J.P. Ozelis; T. Page; T. Peterson; R. Rabehl; W. Robotham; G. Sabbi

Fermilab, in collaboration with LBNL and BNL, is developing a quadrupole for installation in the interaction region inner triplets of the LHC. This magnet is required to have an operating gradient of 215 T/m across a 70 mm coil bore, and operates in superfluid helium at 1.9 K. A 2 m magnet program addressing mechanical, magnetic, quench protection, and thermal issues associated with the design was completed earlier this year, and production of the first full length, cryostatted prototype magnet is underway. This paper summarizes the conclusions of the 2 m program, and the design and status of the first full-length prototype magnet.


IEEE Transactions on Applied Superconductivity | 2012

Solenoid Magnet System for the Fermilab Mu2e Experiment

M.J. Lamm; N. Andreev; Giorgio Ambrosio; J. Brandt; R. Coleman; D. Evbota; V.V. Kashikhin; M. L. Lopes; J. P. Miller; T. H. Nicol; R. Ostojic; T. Page; T. Peterson; J. Popp; V. Pronskikh; Z. Tang; M. Tartaglia; M. Wake; R. Wands; R. Yamada

The Fermilab Mu2e experiment seeks to measure the rare process of direct muon to electron conversion in the field of a nucleus. Key to the design of the experiment is a system of three superconducting solenoids; a muon production solenoid (PS) which is a 1.8 m aperture axially graded solenoid with a peak field of 5 T used to focus secondary pions and muons from a production target located in the solenoid aperture; an “S shaped” transport solenoid (TS) which selects and transports the subsequent muons towards a stopping target; a detector solenoid (DS) which is an axially graded solenoid at the upstream end to focus transported muons to a stopping target, and a spectrometer solenoid at the downstream end to accurately measure the momentum of the outgoing conversion electrons. The magnetic field requirements, the significant magnetic coupling between the solenoids, the curved muon transport geometry and the large beam induced energy deposition into the superconducting coils pose significant challenges to the magnetic, mechanical, and thermal design of this system. In this paper a conceptual design for the magnetic system which meets the Mu2e experiment requirements is presented.


IEEE Transactions on Applied Superconductivity | 2014

Challenges and Design of the Transport Solenoid for the Mu2e Experiment at Fermilab

G. Ambrosio; N. Andreev; Sergey Cheban; R. Coleman; N. Dhanaraj; D. Evbota; S. Feher; V. S. Kashikhin; M.J. Lamm; V. Lombardo; M. L. Lopes; J. P. Miller; T. H. Nicol; D. Orris; T. Page; T. Peterson; V. Pronskikh; W. Schappert; M. Tartaglia; R. Wands

The Fermilab Mu2e experiment seeks to measure the rare process of direct muon to electron conversion in the field of a nucleus. The magnet system for this experiment is made of three warm-bore solenoids: the Production Solenoid (PS), the Transport Solenoid (TS), and the Detector Solenoid (DS). The TS is an “S-shaped” solenoid set between the other bigger solenoids. The Transport Solenoid has a warm-bore aperture of 0.5 m and field between 2.5 and 2.0 T. The PS and DS have, respectively warm-bore aperture of 1.5 m and 1.9 m, and peak field of 4.6 T and 2 T. In order to meet the field specifications, the TS starts inside the PS and ends inside the DS. The strong coupling with the adjacent solenoids poses several challenges to the design and operation of the Transport Solenoid. The coil layout has to compensate for the fringe field of the adjacent solenoids. The quench protection system should handle all possible quench and failure scenarios in all three solenoids. The support system has to be able to withstand very different forces depending on the powering status of the adjacent solenoids. In this paper, the conceptual design of the Transport Solenoid is presented and discussed focusing on these coupling issues and the proposed solutions.


Presented at Cryogenic Engineering Conference and International Cryogenic Materials Conference CEC-ICMC 2011, Spokane, Washington, 13-17 June 2011 | 2012

Conceptual design of the Mu2e production solenoid cold mass

Vadim V. Kashikhin; G. Ambrosio; N. Andreev; M.J. Lamm; N. Mokhov; T. H. Nicol; T. Page; V. Pronskikh

The Muon-to-Electron conversion experiment (Mu2e), under development at Fermilab, seeks to detect direct muon to electron conversion to provide evidence for a process violating muon and electron lepton number conservation that cannot be explained by the Standard Model of particle physics. The required magnetic field is produced by a series of superconducting solenoids of various apertures and lengths. This paper describes the conceptual design of the 5 T, 4 m long solenoid cold mass with 1.67 m bore with the emphasis on the magnetic, radiation and thermal analyses.


IEEE Transactions on Applied Superconductivity | 2009

HINS Superconducting Lens and Cryostat Performance

T. Page; J. DiMarco; Y. Huang; D. Orris; M. Tartaglia; I. Terechkine; J.C. Tompkins

Fermi National Accelerator Laboratory is involved in the development of a 60 MeV superconducting linac. This linac is part of the High Intensity Neutrino Source (HINS) R&D Program. The initial beam acceleration in the front end section of the linac is achieved using room temperature spoke cavities, each of which is combined with a superconducting focusing solenoid. These solenoid magnets are cooled with liquid helium at 4.5 K, operate at 250 A and have a maximum magnetic field strength of 7.5 T. A prototype solenoid cryostat was built and tested at the Fermilab Magnet Test Facility. This paper discusses the test results of the prototype and compares the measured and estimated performance of the cryostat. We also present the methods and results for measuring and fiducializing the axis of the solenoid lens.


IEEE Transactions on Applied Superconductivity | 2007

Designing Focusing Solenoids for Superconducting RF Accelerators

G. Davis; V.V. Kashikhin; T. Page; I. Terechkine; J.C. Tompkins; T. Wokas

The design of a focusing solenoid for use in a superconducting RF linac requires resolving a range of problems with conflicting requirements. Providing the required focusing strength contradicts the goal of minimizing the stray field on the surfaces of adjacent superconducting RF cavities. The requirement of a compact solenoid, able to fit into a gap between cavities, contradicts the need of mechanical support necessary to restrain electromagnetic forces that can result in coil motion and subsequent quenching. In this report we will attempt to address these and other issues arising during the development of focusing solenoids. Some relevant test data will also be presented.


IEEE Transactions on Applied Superconductivity | 2005

Test results of LHC interaction regions quadrupoles produced by Fermilab

S. Feher; R. Bossert; J. Carson; D.R. Chichili; J. Kerby; M.J. Lamm; A. Nobrega; T. H. Nicol; T. Ogitsu; D. Orris; T. Page; T. Peterson; R. Rabehl; W. Robotham; R.M. Scanlan; P. Schlabach; C. Sylvester; J. Strait; M. Tartaglia; J.C. Tompkins; G. Velev; S. Yadav; A.V. Zlobin

The US-LHC Accelerator Project is responsible for the production of the Q2 optical elements of the final focus triplets in the LHC interaction regions. As part of this program Fermilab is in the process of manufacturing and testing cryostat assemblies (LQXB) containing two identical quadrupoles (MQXB) with a dipole corrector between them. The 5.5 m long Fermilab designed MQXB have a 70 mm aperture and operate in superfluid helium at 1.9 K with a peak field gradient of 215 T/m. This paper summarizes the test results of several production MQXB quadrupoles with emphasis on quench performance and alignment studies. Quench localization studies using quench antenna signals are also presented.


IEEE Transactions on Applied Superconductivity | 2014

Tolerance Studies of the Mu2e Solenoid System

M. L. Lopes; Giorgio Ambrosio; M. Buehler; R. Coleman; D. Evbota; S. Feher; V.V. Kashikhin; M.J. Lamm; J. P. Miller; G. Moretti; R. Ostojic; T. Page; J. Popp; M. Tartaglia

The muon-to-electron conversion experiment at Fermilab is designed to explore charged lepton flavor violation. It is composed of three large superconducting solenoids, namely, the production solenoid, the transport solenoid, and the detector solenoid. Each subsystem has a set of field requirements. Tolerance sensitivity studies of the magnet system were performed with the objective of demonstrating that the present magnet design meets all the field requirements. Systematic and random errors were considered on the position and alignment of the coils. The study helps to identify the critical sources of errors and which are translated to coil manufacturing and mechanical support tolerances.


IEEE Transactions on Applied Superconductivity | 2014

Reference Design of the Mu2e Detector Solenoid

S. Feher; N. Andreev; J. Brandt; Sergey Cheban; R. Coleman; N. Dhanaraj; I. Fang; M.J. Lamm; V. Lombardo; M. L. Lopes; J. P. Miller; R. Ostojic; D. Orris; T. Page; T. Peterson; Z. Tang; R. Wands

The Mu2e experiment at Fermilab has been approved by the Department of Energy to proceed with the development of the preliminary design. Integral to the success of Mu2e is the superconducting solenoid system. One of the three major solenoids is the detector solenoid that houses the stopping target and the detectors. The goal of the detector solenoid team is to produce detailed design specifications that are sufficient for vendors to produce the final design drawings, tooling and fabrication procedures and proceed to production. In this paper we summarize the reference design of the detector solenoid.


IEEE Transactions on Applied Superconductivity | 2009

HINS Linac Front End Focusing System R&D

Giorgio Apollinari; R. Carcagno; J. DiMarco; Yuenian Huang; Vadim V. Kashikhin; D. Orris; T. Page; Roger R. Rabehl; C. Sylvester; M. Tartaglia; I. Terechkine; J.C. Tompkins; B. Mustapha; Peter Ostroumov

This report summarizes current status of an R&D program to develop a focusing system for the front end of a superconducting RF linac. Superconducting solenoids will be used as focusing lenses in the low energy accelerating sections of the front end. The development of focusing lenses for the first accelerating section is in the production stage, and lens certification activities are in preparation at FNAL. The report contains information about the focusing lens design and performance, including solenoid, dipole corrector, and power leads, and about cryogenic system design and performance. It also describes the lens magnetic axis position measurement technique and discusses scope of an acceptance/certification process.

Collaboration


Dive into the T. Page's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge