Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where T. Ribeiro is active.

Publication


Featured researches published by T. Ribeiro.


British Poultry Science | 2013

Direct supplementation of diet is the most efficient way of enriching broiler meat with n-3 long-chain polyunsaturated fatty acids.

T. Ribeiro; M.M. Lordelo; Susana P. Alves; Rui J.B. Bessa; Paulo Costa; J. P. C. Lemos; L. M. A. Ferreira; Carlos M. G. A. Fontes; José A. M. Prates

Abstract 1. Concentrations of beneficial omega-3 long-chain polyunsaturated fatty acids (n-3 LC-PUFAs) in poultry meat can be improved by increasing the concentration of n-3 PUFA in poultry diets. 2. A decrease in flavour quality is, however, usually associated with the dietary supplementation with n-3 PUFA, which is due to the susceptibility of PUFA to oxidation. 3. This experiment was conducted to study the effects of introducing two different n-3 fatty acid sources (extruded linseed and DHA Gold™, a proprietary algal product rich in docosahexaenoic acid), either separately or together, on broiler productive performance, and meat quality, oxidative stability, sensory traits and LC-PUFA profile. 4. Birds given the algal product displayed better productive performances than animals from other groups. 5. The data revealed an improvement in the fatty acid nutritional value of meat from birds receiving the algal product and an inefficient conversion of α-linolenic acid (LNA) into LC-PUFA. 6. Metabolisation of LNA in vivo is not sufficient to improve meat quality in n-3 LC-PUFA and direct supplementation of the diet with n-3 LC-PUFA is a better alternative to modulate an increase in beneficial fatty acids of broiler meat. 7. The overall acceptability of meat was negatively affected by the dietary supplementation with 7.4% of DHA, in contrast to the supplementation with 3.7% of DHA, which showed to be efficient in improving LC-PUFA meat content without affecting its sensory properties.


British Poultry Science | 2012

The thermostable β-1,3-1,4-glucanase from Clostridium thermocellum improves the nutritive value of highly viscous barley-based diets for broilers

T. Ribeiro; M.M. Lordelo; José A. M. Prates; L. Falcão; J.P.B. Freire; L. M. A. Ferreira; Carlos M. G. A. Fontes

1. Microbial β-1,3-1,4-glucanases improve the nutritive value of barley-based diets for poultry by effectively decreasing the degree of polymerisation of the anti-nutritive soluble β-glucans. Glycoside hydrolases (GHs) acting on recalcitrant polysaccharides display a modular architecture comprising a catalytic domain linked to one or more non-catalytic Carbohydrate-Binding Modules (CBMs). 2. GHs and CBMs have been classified in different families based on primary structure similarity (see CAZy webpage at http://www.cazy.org). The role of CBMs is to anchor the appended GHs into their target substrates, therefore eliciting the efficient hydrolysis of structural carbohydrates. 3. Here we describe the biochemical properties of the family 16 GH from Clostridium thermocellum, termed CtGlc16A. CtGlc16A is a thermostable enzyme that specifically acts on β-1,3-1,4-glucans with a remarkable catalytic activity (38000 U/mg protein). 4. CtGlc16A, individually or fused to the family 11 β-glucan-binding domain of cellulase CtLic26A-Cel5E of C. thermocellum, was used to supplement a highly viscous barley-based diet for broilers. 5. The data showed that birds fed on diets supplemented with the recombinant enzymes displayed an improved performance when compared with birds given diets not supplemented with exogenous enzymes. However, inclusion of the non-catalytic CBMs had no influence on the capacity of CtGlc16A to reduce the anti-nutritive effects of soluble β-1,3-1,4-glucans. 6. The data suggest that at elevated dosage rates, CBMs might be unable to potentiate the catalytic activity of appended catalytic domains; this effect may only be revealed when feed enzymes are incorporated at low levels.


Poultry Science | 2011

Levels of endogenous β-glucanase activity in barley affect the efficacy of exogenous enzymes used to supplement barley-based diets for poultry

T. Ribeiro; M. M. S. Lordelo; P. I. P. Ponte; B. Maçãs; José A. M. Prates; M. Aguiar Fontes; L. Falcão; J. P. B. Freire; L. M. A. Ferreira; Carlos M. G. A. Fontes

To improve the nutritive value of barley-based diet for broilers, 2 experiments using 2 different barley lots were performed to evaluate the capacity of a mesophilic cellulase when fused to a β-glucan specific family 11 carbohydrate-binding module. The data revealed that the recombinant β-glucanase derivatives were not appropriate for feed supplementation because of a lack of stability at acidic pH levels. However, under the same experimental conditions, a commercial enzyme mixture improved the nutritive value of 1 of the cereal lots used. Analysis of the nutritive value of the 2 barleys revealed intrinsic differences in the levels of endogenous β-glucanase activity. These differences were extensively evident when the studies were expanded to a range of 64 barley lots. Thus, to clarify the effect of endogenous cellulases on the efficacy of exogenous β-glucanases used to supplement barley-based diets for poultry, 2 barley lots presenting low and high levels of endogenous plant cell wall-degrading enzymes were selected. These lots were used to prepare 2 barley-based diets, which were supplemented with or without a commercial enzyme product and fed to broiler chicks. The data revealed that the exogenous enzymes were effective when the basal diet presented low levels of endogenous β-glucanases but were unable to improve the nutritive value of the barley lot displaying higher β-glucanase activity. Thus, these studies suggest that levels of endogenous β-glucanases may affect the efficacy of exogenous enzymes used to improve the nutritive value of barley-based diets for broilers. The development of a quick β-glucanase assay that could be applied for cereal-based feeds may help identify those barley-based diets that are more responsive to the action of feed enzymes.


British Poultry Science | 2008

A family 11 carbohydrate-binding module (CBM) improves the efficacy of a recombinant cellulase used to supplement barley-based diets for broilers at lower dosage rates

T. Ribeiro; P. I. P. Ponte; Catarina I. P. D. Guerreiro; H.M. Santos; L. Falcão; J.P.B. Freire; L. M. A. Ferreira; José A. M. Prates; Carlos M. G. A. Fontes; M.M. Lordelo

1. Exogenous microbial β-1,3-1,4-glucanases and hemicellulases contribute to improving the nutritive value of cereals rich in soluble non-starch polysaccharides for poultry. 2. In general, plant cell wall hydrolases display a modular structure comprising a catalytic module linked to one or more non-catalytic carbohydrate-binding modules (CBMs). Based on primary structure similarity, CBMs have been classified in 50 different families. CBMs anchor cellulases and hemicellulases into their target substrates, therefore eliciting efficient hydrolysis of recalcitrant polysaccharides. 3. A study was undertaken to investigate the effects of a family 11 β-glucan-binding domain in the function of recombinant derivatives of cellulase CtLic26A-Cel5E of Clostridium thermocellum that were used to supplement a barley-based diet at lower dosage rates. 4. The results showed that birds fed on diets supplemented with the recombinant CtLic26A-Cel5E modular derivative containing the family 11 CBM or the commercial enzyme mixture Rovabio™ Excel AP tended to display improved performance when compared to birds fed diets not supplemented with exogenous enzymes. 5. It is suggested that at lower than previously reported enzyme dosage (10 U/kg vs 30 U/kg of basal diet), the β-glucan-binding domain also elicits the function of the recombinant CtLic26A-Cel5E derivatives. 6. Finally, the data suggest that exogenous enzymes added to barley-based diets act primarily in the proximal section of the gastrointestinal tract.


British Poultry Science | 2008

Role of a family 11 carbohydrate-binding module in the function of a recombinant cellulase used to supplement a barley-based diet for broiler chickens

Catarina I. P. D. Guerreiro; T. Ribeiro; P. I. P. Ponte; M.M. Lordelo; L. Falcão; J.P.B. Freire; L. M. A. Ferreira; José A. M. Prates; Carlos M. G. A. Fontes

1. Cellulases and xylanases display a modular architecture that comprises a catalytic module linked to one or more non-catalytic carbohydrate-binding modules (CBMs). CBMs have been classified into 52 different families, based on primary structure similarity. These non-catalytic modules mediate a prolonged and intimate contact of the enzyme with the target substrate eliciting efficient hydrolysis of the target polysaccharides. 2. A study was undertaken to investigate the importance of a family 11 CBM, displaying high affinities for barley β-glucans, in the function of recombinant derivatives of cellulase CtLic26A-Cel5E of Clostridium thermocellum used to supplement a barley-based diet for broiler chicken. 3. The results showed that birds fed on diets containing the recombinant CtLic26A-Cel5E modular derivatives or the commercial enzyme mixture Rovabio™ Excel AP displayed improved performance when compared with birds fed on diets not supplemented with exogenous enzymes. 4. It is suggested that the enzyme dosage used in this study (30 U/kg of basal diet), was probably too high for the efficacy of the family 11 CBM to be noticed. It remains to be established if the targeting effect resulting from the incorporation of CBMs in plant cell wall hydrolases may be effective at lower exogenous enzyme dosages.


Archives of Biochemistry and Biophysics | 2015

The family 6 Carbohydrate Binding Module (CtCBM6) of glucuronoxylanase (CtXynGH30) of Clostridium thermocellum binds decorated and undecorated xylans through cleft A.

Anil Verma; Pedro Bule; T. Ribeiro; Joana L. A. Brás; Joyeeta Mukherjee; Munishwar N. Gupta; Carlos M. G. A. Fontes; Arun Goyal

CtCBM6 of glucuronoxylan-xylanohydrolase (CtXynGH30) from Clostridium thermocellum was cloned, expressed and purified as a soluble ~14 kDa protein. Quantitative binding analysis with soluble polysaccharides by affinity electrophoresis and ITC revealed that CtCBM6 displays similar affinity towards decorated and undecorated xylans by binding wheat- and rye-arabinoxylans, beechwood-, birchwood- and oatspelt-xylan. Protein melting studies confirmed thermostable nature of CtCBM6 and that Ca(2+) ions did not affect its structure stability and binding affinity significantly. The CtCBM6 structure was modeled and refined and CD spectrum displayed 44% β-strands supporting the predicted structure. CtCBM6 displays a jelly roll β-sandwich fold presenting two potential carbohydrate binding clefts, A and B. The cleft A, is located between two loops connecting β4-β5 and β8-β9 strands. Tyr28 and Phe84 present on these loops make a planar hydrophobic binding surface to accommodate sugar ring of ligand. The cleft B, is located on concave surface of β-sandwich fold. Tyr34 and Tyr104 make a planar hydrophobic platform, which may be inaccessible to ligand due to hindrance by Pro68. Site-directed mutagenesis revealed Tyr28 and Phe84 in cleft A, playing a major role in ligand binding. The results suggest that CtCBM6 interacts with carbohydrates through cleft A, which recognizes equally well both decorated and un-decorated xylans.


British Poultry Science | 2014

Effect of reduced dietary protein and supplementation with a docosahexaenoic acid product on broiler performance and meat quality

T. Ribeiro; M.M. Lordelo; P. Costa; Susana P. Alves; W. S. Benevides; Rui J.B. Bessa; J. P. C. Lemos; Rui Pinto; L. M. A. Ferreira; Carlos M. G. A. Fontes; José A. M. Prates

Abstract 1. Chicken breast meat is a lean meat due to its low content of intramuscular fat (IMF) resulting in an overall lower acceptability by consumers due to a decrease in juiciness, flavour and increased chewiness. Recently, studies performed in pigs suggested the possibility of increasing IMF by decreasing dietary crude protein (CP) content, an effect possibly mediated through an increased lipogenesis. 2. Dietary supplementation with lipids rich in omega 3 long-chain polyunsaturated fatty acids (n-3 LC-PUFA) may modulate an increase in the content of these fatty acids in meat from monogastric animals and, thus, promote the daily intake of n-3 LC-PUFA by humans. 3. LC-PUFA are very susceptible to oxidation, resulting in off-flavours that affect meat quality and consumers’ acceptability. 4. This trial was conducted to assess the effect of reducing dietary CP, from 21% to 17%, on chicken’s meat IMF content and, simultaneously, to evaluate if a complementary supplementation with a proprietary n-3 LC-PUFA source (DHA Gold™) could improve meat quality. These effects were assessed by measuring productive performance and meat quality, oxidative stability, sensory traits and fatty acid profile. 5. A reduction in CP content of broiler diets, from 21% to 17%, balanced for lysine, improved performance while it was not sufficient to increase IMF content in chicken meat. In contrast, DHA Gold™ supplementation had a positive impact both in broiler productive parameters and in meat fatty acid profile. 6. In addition, incorporation of 7.4% of DHA Gold™ in the diet promoted carcass yield but negatively affected chicken meat acceptability by consumers, due to a decrease of meat oxidative stability. 7. Overall the data suggest that neither a dietary supplementation with DHA Gold™ nor a reduction in CP have a direct positive effect in the levels of IMF present in broiler meat.


Biochimica et Biophysica Acta | 2010

Family 42 carbohydrate-binding modules display multiple arabinoxylan-binding interfaces presenting different ligand affinities.

T. Ribeiro; Teresa Santos-Silva; Victor D. Alves; Fernando M. V. Dias; Ana S. Luís; José A. M. Prates; Luís M. A. Ferreira; Maria João Romão; Carlos M. G. A. Fontes

Enzymes that degrade plant cell wall polysaccharides display a modular architecture comprising a catalytic domain bound to one or more non-catalytic carbohydrate-binding modules (CBMs). CBMs display considerable variation in primary structure and are grouped into 59 sequence-based families organized in the Carbohydrate-Active enZYme (CAZy) database. Here we report the crystal structure of CtCBM42A together with the biochemical characterization of two other members of family 42 CBMs from Clostridium thermocellum. CtCBM42A, CtCBM42B and CtCBM42C bind specifically to the arabinose side-chains of arabinoxylans and arabinan, suggesting that various cellulosomal components are targeted to these regions of the plant cell wall. The structure of CtCBM42A displays a beta-trefoil fold, which comprises 3 sub-domains designated as alpha, beta and gamma. Each one of the three sub-domains presents a putative carbohydrate-binding pocket where an aspartate residue located in a central position dominates ligand recognition. Intriguingly, the gamma sub-domain of CtCBM42A is pivotal for arabinoxylan binding, while the concerted action of beta and gamma sub-domains of CtCBM42B and CtCBM42C is apparently required for ligand sequestration. Thus, this work reveals that the binding mechanism of CBM42 members is in contrast with that of homologous CBM13s where recognition of complex polysaccharides results from the cooperative action of three protein sub-domains presenting similar affinities.


Journal of Agricultural and Food Chemistry | 2014

Construction of GH16 β-Glucanase Mini-cellulosomes To Improve the Nutritive Value of Barley-Based Diets for Broilers

Mónica Costa; Vania O. Fernandes; T. Ribeiro; Luis Serrano; Vânia Cardoso; Helena Santos; Madalena Lordelo; Luís M. A. Ferreira; Carlos M. G. A. Fontes

Anaerobic cellulolytic bacteria organize a comprehensive range of cellulases and hemicellulases in high molecular weight multienzyme complexes termed cellulosomes. Integration of cellulosomal components occurs via highly ordered protein-protein interactions between cohesins and dockerins. This paper reports the production of mini-cellulosomes containing one (GH16-1C) or three (GH16-3C) copies of Clostridium thermocellum glucanase 16A (CtGlc16A). Barley β-1,3-1,4-glucans are known to be antinutritive for monogastric animals, particularly for poultry. GH16-1C and GH16-3C were used to supplement barley-based diets for broilers. The data revealed that the two mini-cellulosomes effectively improved the nutritive value of barley-based diets for broilers. Analysis of mini-cellulosome molecular integrity revealed that linker sequences separating protein domains in scaffoldins and cellulosomal catalytic units are highly susceptible to proteolytic attack in vivo. The data suggest that linker protection could result in further improvements in enzyme efficacy to improve the nutritive value of barley-based diets for monogastric animals.


British Poultry Science | 2018

Variation in levels of non-starch polysaccharides and endogenous endo-1,4-β-xylanases affects the nutritive value of wheat for poultry

V. Cardoso; E. A. Fernandes; H. M. M. Santos; B. Maçãs; M.M. Lordelo; L. T. Gama; L. M. A. Ferreira; Carlos M. G. A. Fontes; T. Ribeiro

ABSTRACT 1. Endo-1,4-β-xylanase is known to improve the nutritive value of wheat-based diets for poultry by degrading dietary arabinoxylans. However, broilers’ response to supplementation of wheat-based diets with exogenous endo-1,4-β-xylanase is not always observed. 2. In this study, 108 different wheat lots were analysed for levels of extract viscosity as well as for endogenous endo-1,4-β-xylanase activity, and the impact of these two variables in animal performance was tested. 3. Results revealed that endogenous endo-1,4-β-xylanase activity and extract viscosity content varied widely among different wheat lots. Thus, a trial was conducted to evaluate the efficacy of exogenous enzyme supplementation in broiler diets using wheats with different levels of extract viscosity and endogenous endo-1,4-β-xylanase activity. 4. The data revealed that exogenous enzyme supplementation was only effective when the wheat present in the diet had high levels of extract viscosity (14.8 cP) with low endogenous endo-1,4-β-xylanase activity (347.0 U/kg). Nevertheless, it is apparent that exogenous microbial xylanases reduce digesta extract viscosity and feed conversion ratio independently of the endogenous properties presented by different wheat lots. 5. The data suggest that extract viscosity and/or endogenous endo-1,4-β-xylanase activity affect the response to enzyme supplementation by poultry fed on wheat-based diets.

Collaboration


Dive into the T. Ribeiro's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

M.M. Lordelo

Instituto Superior de Agronomia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

L. Falcão

Instituto Superior de Agronomia

View shared research outputs
Top Co-Authors

Avatar

J.P.B. Freire

Instituto Superior de Agronomia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge